Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = magnetic poly(vinyl alcohol) gels

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 17243 KiB  
Article
Microscopic and Macroscopic Characterization of Hydrogels Based on Poly(vinyl-alcohol)–Glutaraldehyde Mixtures for Fricke Gel Dosimetry
by Silvia Locarno, Paolo Arosio, Francesca Curtoni, Marco Piazzoni, Emanuele Pignoli and Salvatore Gallo
Gels 2024, 10(3), 172; https://doi.org/10.3390/gels10030172 - 28 Feb 2024
Cited by 12 | Viewed by 2317
Abstract
In recent decades, hydrogels have emerged as innovative soft materials with widespread applications in the medical and biomedical fields, including drug delivery, tissue engineering, and gel dosimetry. In this work, a comprehensive study of the macroscopic and microscopic properties of hydrogel matrices based [...] Read more.
In recent decades, hydrogels have emerged as innovative soft materials with widespread applications in the medical and biomedical fields, including drug delivery, tissue engineering, and gel dosimetry. In this work, a comprehensive study of the macroscopic and microscopic properties of hydrogel matrices based on Poly(vinyl-alcohol) (PVA) chemically crosslinked with Glutaraldehyde (GTA) was reported. Five different kinds of PVAs differing in molecular weight and degree of hydrolysis were considered. The local microscopic organization of the hydrogels was studied through the use of the 1H nuclear magnetic resonance relaxometry technique. Various macroscopic properties (gel fraction, water loss, contact angle, swelling degree, viscosity, and Young’s Modulus) were investigated with the aim of finding a correlation between them and the features of the hydrogel matrix. Additionally, an optical characterization was performed on all the hydrogels loaded with Fricke solution to assess their dosimetric behavior. The results obtained indicate that the degree of PVA hydrolysis is a crucial parameter influencing the structure of the hydrogel matrix. This factor should be considered for ensuring stability over time, a vital property in the context of potential biomedical applications where hydrogels act as radiological tissue-equivalent materials. Full article
(This article belongs to the Special Issue Gel Dosimetry (2nd Edition))
Show Figures

Figure 1

12 pages, 4934 KiB  
Article
LCST-UCST Transition Property of a Novel Retarding Swelling and Thermosensitive Particle Gel
by Liang Li, Jixiang Guo and Chuanhong Kang
Materials 2023, 16(7), 2761; https://doi.org/10.3390/ma16072761 - 30 Mar 2023
Cited by 9 | Viewed by 3648
Abstract
Super absorbent resin particles used as profile control and water plugging agent remains a deficiency that the particles swells with high speed when absorbing water, resulting in low strength and limited depth of migration. To address this issue, we proposed a thermosensitive particle [...] Read more.
Super absorbent resin particles used as profile control and water plugging agent remains a deficiency that the particles swells with high speed when absorbing water, resulting in low strength and limited depth of migration. To address this issue, we proposed a thermosensitive particle gel possessing the upper critical solution temperature (UCST), which was synthesized from hydrophobically modified poly(vinyl alcohol)s (PVA) with glutaraldehyde (GA) as a cross-linker. The structure of the hydrogel was characterized by Fourier transform infrared spectrophotometer (FTIR) and nuclear magnetic resonance (NMR). The thermosensitive-transparency measurement and swelling experiment show that the hydrophobic-modified PVA solutions and corresponding hydrogels exhibited thermosensitive phase transition behaviors with lower critical solution temperature (LCST) and UCST. The results indicated that the temperature-induced phase transition behavior of CHPVA hydrogels leads to their retarding swelling property and great potential as an efficient water plugging agent with excellent temperature and salt resistance. Full article
(This article belongs to the Special Issue Advanced Polymer Matrix Nanocomposite Materials)
Show Figures

Figure 1

11 pages, 3826 KiB  
Article
Facile Fabrication of Magnetic Poly(Vinyl Alcohol)/Activated Carbon Composite Gel for Adsorptive Removal of Dyes
by Tao Wen, Baotao Huang and Li Zhou
J. Compos. Sci. 2022, 6(2), 55; https://doi.org/10.3390/jcs6020055 - 11 Feb 2022
Cited by 8 | Viewed by 2840
Abstract
Activated carbon (AC) has been widely utilized for the adsorption of pollutants from water. However, it is difficult to recycle the AC after adsorption. In this paper, we report a facile one-pot approach to fabricate magnetic poly(vinyl alcohol)/AC composite gel (mPVA/AC CG) by [...] Read more.
Activated carbon (AC) has been widely utilized for the adsorption of pollutants from water. However, it is difficult to recycle the AC after adsorption. In this paper, we report a facile one-pot approach to fabricate magnetic poly(vinyl alcohol)/AC composite gel (mPVA/AC CG) by dropwise addition of an aqueous mixture of PVA, AC and iron ions into the ammonia solution. The obtained mPVA/AC CG after freeze-drying shows porous microstructure and favorable magnetic properties. The utilization of mPVA/AC CG for adsorptive removal of methylene blue (MB) and methyl orange (MO) dyes from water was investigated. The mPVA/AC CG not only exhibited good adsorption performance for both MB and MO dyes but also could be readily recycled using a magnet after adsorption. The adsorption process was well described by the pseudo-second-order kinetic model and the Langmuir isotherm model. Considering the simple fabrication process, good adsorption performance and favorable magnetic separation capability, this work provides a viable strategy for combining the features of AC and magnetic gel for fabrication of applicable magnetic adsorbent. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2021)
Show Figures

Figure 1

28 pages, 2885 KiB  
Review
Hydrogels for Three-Dimensional Ionizing-Radiation Dosimetry
by Maurizio Marrale and Francesco d’Errico
Gels 2021, 7(2), 74; https://doi.org/10.3390/gels7020074 - 21 Jun 2021
Cited by 43 | Viewed by 6173
Abstract
Radiation-sensitive gels are among the most recent and promising developments for radiation therapy (RT) dosimetry. RT dosimetry has the twofold goal of ensuring the quality of the treatment and the radiation protection of the patient. Benchmark dosimetry for acceptance testing and commissioning of [...] Read more.
Radiation-sensitive gels are among the most recent and promising developments for radiation therapy (RT) dosimetry. RT dosimetry has the twofold goal of ensuring the quality of the treatment and the radiation protection of the patient. Benchmark dosimetry for acceptance testing and commissioning of RT systems is still based on ionization chambers. However, even the smallest chambers cannot resolve the steep dose gradients of up to 30–50% per mm generated with the most advanced techniques. While a multitude of systems based, e.g., on luminescence, silicon diodes and radiochromic materials have been developed, they do not allow the truly continuous 3D dose measurements offered by radiation-sensitive gels. The gels are tissue equivalent, so they also serve as phantoms, and their response is largely independent of radiation quality and dose rate. Some of them are infused with ferrous sulfate and rely on the radiation-induced oxidation of ferrous ions to ferric ions (Fricke-gels). Other formulations consist of monomers dispersed in a gelatinous medium (Polyacrylamide gels) and rely on radiation-induced polymerization, which creates a stable polymer structure. In both gel types, irradiation causes changes in proton relaxation rates that are proportional to locally absorbed dose and can be imaged using magnetic resonance imaging (MRI). Changes in color and/or opacification of the gels also occur upon irradiation, allowing the use of optical tomography techniques. In this work, we review both Fricke and polyacrylamide gels with emphasis on their chemical and physical properties and on their applications for radiation dosimetry. Full article
(This article belongs to the Special Issue Gels: 6th Anniversary)
Show Figures

Figure 1

13 pages, 4361 KiB  
Article
One-Step Preparation of Nickel Nanoparticle-Based Magnetic Poly(Vinyl Alcohol) Gels
by Jun Li, Kwang-Pill Lee and Anantha Iyengar Gopalan
Coatings 2019, 9(11), 744; https://doi.org/10.3390/coatings9110744 - 9 Nov 2019
Cited by 9 | Viewed by 3812
Abstract
Magnetic nanoparticles (MNPs) are of great interest due to their unique properties, especially in biomedical applications. MNPs can be incorporated into other matrixes to prepare new functional nanomaterials. In this work, we described a facile, one-step strategy for the synthesis of magnetic poly(vinyl [...] Read more.
Magnetic nanoparticles (MNPs) are of great interest due to their unique properties, especially in biomedical applications. MNPs can be incorporated into other matrixes to prepare new functional nanomaterials. In this work, we described a facile, one-step strategy for the synthesis of magnetic poly(vinyl alcohol) (mPVA) gels. In the synthesis, nickel nanoparticles and cross-linked mPVA gels were simultaneously formed. Ni nanoparticles (NPs) were also incorporated into a stimuli-responsive polymer to result in multiresponsive gels. The size of and distribution of the Ni particles within the mPVA gels were controlled by experimental conditions. The mPVA gels were characterized by field emission scanning electron microscope, X-ray diffraction, magnetic measurements, and thermogravimetric analysis. The new mPVA gels are expected to have applications in drug delivery and biotechnology. Full article
(This article belongs to the Special Issue Biointerface Coatings for Biomaterials and Biomedical Applications)
Show Figures

Figure 1

Back to TopTop