Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = magnesium-doped hydroxyapatite/chitosan composite coatings

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 6699 KiB  
Article
Influence of Electron Beam Irradiation and RPMI Immersion on the Development of Magnesium-Doped Hydroxyapatite/Chitosan Composite Bioactive Layers for Biomedical Applications
by Andreea Groza, Maria E. Hurjui, Sasa A. Yehia-Alexe, Cornel Staicu, Coralia Bleotu, Simona L. Iconaru, Carmen S. Ciobanu, Liliana Ghegoiu and Daniela Predoi
Polymers 2025, 17(4), 533; https://doi.org/10.3390/polym17040533 - 18 Feb 2025
Viewed by 758
Abstract
Magnesium-doped hydroxyapatite/chitosan composite coatings produced by the radio-frequency magnetron sputtering technique were exposed to 5 MeV electron beams of 8 and 30 Gy radiation doses in a linear electron accelerator. The surfaces of unirradiated layers are smooth, while the irradiated ones exhibit nano-structures [...] Read more.
Magnesium-doped hydroxyapatite/chitosan composite coatings produced by the radio-frequency magnetron sputtering technique were exposed to 5 MeV electron beams of 8 and 30 Gy radiation doses in a linear electron accelerator. The surfaces of unirradiated layers are smooth, while the irradiated ones exhibit nano-structures with sizes that increase from 60 nm at a 8 Gy dose to 200 nm at a 30 Gy dose. Young’s modulus and the stiffness of the layers decrease from 58.9 GPa and 10 µN/nm to 5 GPa and 2.2 µN/nm, respectively, when the radiation doses are increased from 0 to 30 Gy. These data suggest the diminishing of the contribution of the chitosan to the elasticity of the magnesium-doped hydroxyapatite/chitosan composite layers after electron beam irradiation. The biological capabilities of the coatings were assessed before and after their immersion in RPMI-1640 cell culture medium for 7 and 14 days, respectively, and further cultured with a MG63 cell line (ATCC CRL1427) in Dulbecco’s Modified Eagle Medium supplemented with fetal bovine serum, penicillin–streptomycin, and L-glutamine. Thus, 1 µm spherical structures were developed on the surfaces of the layers exposed to a 30 Gy radiation dose and immersed for 14 days in the RPMI-1640 biological medium. The molecular structures of all the RPMI-1640 immersed samples were modified by the growth of a carbonated hydroxyapatite layer characterized by a B-type substitution, as Fourier Transform Infrared Spectroscopy revealed. The biological assay proved the increased biocompatibility of the layers kept in RPMI-1640 medium and enhanced MG63 cell attachment and proliferation. Atomic force microscopy analysis indicated the elongated fibroblastic cell morphology of MG63 cells with minor alteration at 30 Gy irradiation doses as a result of layer biocompatibility modifications. Full article
Show Figures

Figure 1

19 pages, 9954 KiB  
Article
Biocomposite Coatings Doped with Magnesium and Zinc Ions in Chitosan Matrix for Antimicrobial Applications
by Daniela Predoi, Carmen Steluta Ciobanu, Simona Liliana Iconaru, Steinar Raaen and Krzysztof Rokosz
Materials 2023, 16(12), 4412; https://doi.org/10.3390/ma16124412 - 15 Jun 2023
Cited by 4 | Viewed by 1912
Abstract
Hydroxyapatite doped with magnesium and zinc in chitosan matrix biocomposites have great potential for applications in space technology, aerospace, as well as in the biomedical field, as a result of coatings with multifunctional properties that meet the increased requirements for wide applications. In [...] Read more.
Hydroxyapatite doped with magnesium and zinc in chitosan matrix biocomposites have great potential for applications in space technology, aerospace, as well as in the biomedical field, as a result of coatings with multifunctional properties that meet the increased requirements for wide applications. In this study, coatings on titanium substrates were developed using hydroxyapatite doped with magnesium and zinc ions in a chitosan matrix (MgZnHAp_Ch). Valuable information concerning the surface morphology and chemical composition of MgZnHAp_Ch composite layers were obtained from studies that performed scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), metallographic microscopy, and atomic force microscopy (AFM). The wettability of the novel coatings, based on magnesium and zinc-doped biocomposites in a chitosan matrix on a titanium substrate, was evaluated by performing water contact angle studies. Furthermore, the swelling properties, together with the coating’s adherence to the titanium substrate, were also analyzed. The AFM results emphasized that the composite layers exhibited the surface topography of a uniform layer, and that there were no evident cracks and fissures present on the investigated surface. Moreover, antifungal studies concerning the MgZnHAp_Ch coatings were also carried out. The data obtained from quantitative antifungal assays highlight the strong inhibitory effects of MgZnHAp_Ch against C. albicans. Additionally, our results underline that after 72 h of exposure, the MgZnHAp_Ch coatings display fungicidal features. Thus, the obtained results suggest that the MgZnHAp_Ch coatings possess the requisite properties that make them suitable for use in the development of new coatings with enhanced antifungal features. Full article
Show Figures

Figure 1

20 pages, 4829 KiB  
Article
Influence of the Biological Medium on the Properties of Magnesium Doped Hydroxyapatite Composite Coatings
by Daniela Predoi, Steluta Carmen Ciobanu, Simona Liliana Iconaru and Mihai Valentin Predoi
Coatings 2023, 13(2), 409; https://doi.org/10.3390/coatings13020409 - 11 Feb 2023
Cited by 20 | Viewed by 2095
Abstract
In this paper, the stability of magnesium-doped hydroxyapatite/chitosan (MHC) suspension obtained with the sol-gel approach was evaluated using nondestructive ultrasound measurements. The MHC coatings obtained by the spin-coating technique were characterized before and after immersion for 7 and 14 days, respectively, in Dulbecco’s [...] Read more.
In this paper, the stability of magnesium-doped hydroxyapatite/chitosan (MHC) suspension obtained with the sol-gel approach was evaluated using nondestructive ultrasound measurements. The MHC coatings obtained by the spin-coating technique were characterized before and after immersion for 7 and 14 days, respectively, in Dulbecco’s modified eagle medium (DMEM) by scanning electron microscopy, equipped with an EDAX detector. Also, the functional groups present on the MHC coatings surface were analyzed with the aid of attenuated total reflection (ATR) Fourier transform infrared (FTIR) spectroscopy. The surface microstructure was evaluated using two commentary techniques, namely atomic force microscopy (AFM) and metallographic microscopy (MM). The influence of immersion in DMEM on the biological properties was studied with in vitro studies using primary osteoblast and HCT-8 cell lines. Our results revealed that both surface morphology and chemical composition of the MHC coatings allow rapid development of a new apatite layer on their surface after immersion in DMEM. Preliminary in vitro biological studies underlined the noncytotoxic effect of the studied samples on the proliferation of primary osteoblast and HCT-8 cell lines, which makes them a promising candidate for applications in fields such as orthopedics or dentistry. The antifungal assay of the MHC coatings was assessed using Candida albicans ATCC 10231 and their results showed a good inhibitory effect. The coatings made on the basis of the MHC composite could contribute to increasing the degree of success of implants by decreasing the risk of infections and postoperative inflammation. Full article
(This article belongs to the Special Issue Hydroxyapatite Based Coatings for Biomedical Applications)
Show Figures

Figure 1

17 pages, 7470 KiB  
Article
Biological and Physico-Chemical Properties of Composite Layers Based on Magnesium-Doped Hydroxyapatite in Chitosan Matrix
by Simona Liliana Iconaru, Carmen Steluta Ciobanu, Gabriel Predoi, Krzysztof Rokosz, Mariana Carmen Chifiriuc, Coralia Bleotu, George Stanciu, Radu Hristu, Steinar Raaen, Stefania Mariana Raita, Liliana Ghegoiu, Monica Luminita Badea and Daniela Predoi
Micromachines 2022, 13(10), 1574; https://doi.org/10.3390/mi13101574 - 22 Sep 2022
Cited by 19 | Viewed by 2571
Abstract
In the present study, we report the development and characterization of composite layers (by spin coating) based on magnesium-doped hydroxyapatite in a chitosan matrix, (Ca10−xMgx(PO4)6(OH)2; xMg = 0, 0.08 and 0.3; HApCh, [...] Read more.
In the present study, we report the development and characterization of composite layers (by spin coating) based on magnesium-doped hydroxyapatite in a chitosan matrix, (Ca10−xMgx(PO4)6(OH)2; xMg = 0, 0.08 and 0.3; HApCh, 8MgHApCh and 30MgHApCh). The MgHApCh composite layers were investigated using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS) techniques. The in vitro biological evaluation included the assessment of their cytotoxicity on MG63 osteoblast-like cells and antifungal activity against Candida albicans ATCC 10231 fungal cell lines. The results of the physico-chemical characterization highlighted the obtaining of uniform and homogeneous composite layers. In addition, the biological assays demonstrated that the increase in the magnesium concentration in the samples enhanced the antifungal effect but also decreased their cytocompatibility. However, for certain optimal magnesium ion concentrations, the composite layers presented both excellent biocompatibility and antifungal properties, suggesting their promising potential for biomedical applications in both implantology and dentistry. Full article
(This article belongs to the Special Issue Nanoparticles in Biomedical Sciences)
Show Figures

Figure 1

21 pages, 8311 KiB  
Article
Impact of Gamma Irradiation on the Properties of Magnesium-Doped Hydroxyapatite in Chitosan Matrix
by Daniela Predoi, Carmen Steluta Ciobanu, Simona Liliana Iconaru, Silviu Adrian Predoi, Mariana Carmen Chifiriuc, Steinar Raaen, Monica Luminita Badea and Krzysztof Rokosz
Materials 2022, 15(15), 5372; https://doi.org/10.3390/ma15155372 - 4 Aug 2022
Cited by 28 | Viewed by 2932
Abstract
This is the first report regarding the effect of gamma irradiation on chitosan-coated magnesium-doped hydroxyapatite (xMg = 0.1; 10 MgHApCh) layers prepared by the spin-coating process. The stability of the resulting 10 MgHApCh gel suspension used to obtain the layers has been [...] Read more.
This is the first report regarding the effect of gamma irradiation on chitosan-coated magnesium-doped hydroxyapatite (xMg = 0.1; 10 MgHApCh) layers prepared by the spin-coating process. The stability of the resulting 10 MgHApCh gel suspension used to obtain the layers has been shown by ultrasound measurements. The presence of magnesium and the effect of the irradiation process on the studied samples were shown by X-ray photoelectron spectroscopy (XPS). The XPS results obtained for irradiated 10 MgHApCh layers suggested that the magnesium and calcium contained in the surface layer are from tricalcium phosphate (TCP; Ca3(PO4)2) and hydroxyapatite (HAp). The XPS analysis has also highlighted that the amount of TCP in the surface layer increased with the irradiation dose. The energy-dispersive X-ray spectroscopy (EDX) evaluation showed that the calcium decreases with the increase in the irradiation dose. In addition, a decrease in crystallinity and crystallite size was highlighted after irradiation. By atomic force microscopy (AFM) we have obtained images suggesting a good homogeneity of the surface of the non-irradiated and irradiated layers. The AFM results were also sustained by the scanning electron microscopy (SEM) images obtained for the studied samples. The effect of gamma-ray doses on the Fourier transform infrared spectroscopy (ATR-FTIR) spectra of 10 MgHApCh composite layers was also evaluated. The in vitro antifungal assays proved that 10 MgHApCh composite layers presented a strong antifungal effect, correlated with the irradiation dose and incubation time. The study of the stability of the 10 MgHApCh gel allowed us to achieve uniform and homogeneous layers that could be used in different biomedical applications. Full article
(This article belongs to the Special Issue Hybrid and Composite Biomaterials for Tissue Engineering)
Show Figures

Figure 1

20 pages, 5427 KiB  
Article
Physicochemical and Biological Evaluation of Chitosan-Coated Magnesium-Doped Hydroxyapatite Composite Layers Obtained by Vacuum Deposition
by Daniela Predoi, Carmen Steluta Ciobanu, Simona Liliana Iconaru, Steinar Raaen, Monica Luminita Badea and Krzysztof Rokosz
Coatings 2022, 12(5), 702; https://doi.org/10.3390/coatings12050702 - 20 May 2022
Cited by 22 | Viewed by 2768
Abstract
In the present work, the effectiveness of vacuum deposition technique for obtaining composite thin films based on chitosan-coated magnesium-doped hydroxyapatite Ca10−xMgx(PO4)6 (OH)2 with xMg = 0.025 (MgHApCh) was proved for the first time. The [...] Read more.
In the present work, the effectiveness of vacuum deposition technique for obtaining composite thin films based on chitosan-coated magnesium-doped hydroxyapatite Ca10−xMgx(PO4)6 (OH)2 with xMg = 0.025 (MgHApCh) was proved for the first time. The prepared samples were exposed to three doses (0, 3, and 6 Gy) of gamma irradiation. The MgHApCh composite thin films nonirradiated and irradiated were evaluated by scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS) studies. The biological evaluation of the samples was also presented. All the results obtained from this study showed that the vacuum deposition method allowed for obtaining uniform and homogeneous layers. Fine cracks were observed on the MgHApCh composite thin films’ surface after exposure to a 6 Gy irradiation dose. Additionally, after gamma irradiation, a decrease in Ca, P, and Mg content was noticed. The MgHApCh composite thin films with doses of 0 and 3 Gy of gamma irradiation showed a cellular viability similar to that of the control. Samples with 6 Gy doses of gamma irradiation did not cause significantly higher fibroblast cell death than the control (p > 0.05). On the other hand, the homogeneous distribution of pores that appeared on the surface of coatings after 6 Gy doses of gamma irradiation did not prevent the adhesion of fibroblast cells and their spread on the coatings. In conclusion, we could say that the thin films could be suitable both for use in bone implants and for other orthopedic and dentistry applications. Full article
Show Figures

Figure 1

15 pages, 4485 KiB  
Article
The Effects of Electron Beam Irradiation on the Morphological and Physicochemical Properties of Magnesium-Doped Hydroxyapatite/Chitosan Composite Coatings
by Bogdan Bita, Elena Stancu, Daniela Stroe, Mirabela Dumitrache, Steluta Carmen Ciobanu, Simona Liliana Iconaru, Daniela Predoi and Andreea Groza
Polymers 2022, 14(3), 582; https://doi.org/10.3390/polym14030582 - 31 Jan 2022
Cited by 30 | Viewed by 4191
Abstract
This work reports on the influence of 5 MeV electron beam radiations on the morphological features and chemical structure of magnesium-doped hydroxyapatite/chitosan composite coatings generated by the magnetron sputtering technique. The exposure to ionizing radiation in a linear electron accelerator dedicated to medical [...] Read more.
This work reports on the influence of 5 MeV electron beam radiations on the morphological features and chemical structure of magnesium-doped hydroxyapatite/chitosan composite coatings generated by the magnetron sputtering technique. The exposure to ionizing radiation in a linear electron accelerator dedicated to medical use has been performed in a controllable manner by delivering up to 50 Gy radiation dose in fractions of 2 Gy radiation dose per 40 s. After the irradiation with electron beams, the surface of layers became nano-size structured. The partial detachment of irradiated layers from the substrates has been revealed only after visualizing their cross sections by scanning electron microscopy. The energy dispersive X-ray spectral analysis of layer cross-sections indicated that the distribution of chemical elements in the samples depends on the radiation dose. The X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and X-ray diffraction analysis have shown that the physicochemical processes induced by the ionizing radiation in the magnesium doped hydroxyapatite/chitosan composite coatings do not alter the apatite structure, and Mg remains bonded with the phosphate groups. Full article
(This article belongs to the Special Issue Advances in Polymer Based Composite Coatings II)
Show Figures

Figure 1

Back to TopTop