Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = magnesium isoglycyrrhizinate injection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4890 KiB  
Article
Integrating Metabolomics and Network Pharmacology to Decipher the Hepatoprotective Effect Mechanisms of Magnesium Isoglycyrrhizinate Injection
by Yihua Zhang, Hui Li, Xueli Liu, Qiang Wang, Dong Zhao, Ming Su, Zhixin Jia and Shigang Shen
Curr. Issues Mol. Biol. 2024, 46(1), 279-298; https://doi.org/10.3390/cimb46010019 - 29 Dec 2023
Cited by 4 | Viewed by 2174
Abstract
This study aimed to explore the liver protective effects of a fourth-generation glycyrrhizic acid product (magnesium isoglycyrrhizinate injection, MII) in the treatment of mice with drug-induced liver injury—specifically, to determine its effects on plasma metabolites. Moreover, the possible mechanism of its intervention in [...] Read more.
This study aimed to explore the liver protective effects of a fourth-generation glycyrrhizic acid product (magnesium isoglycyrrhizinate injection, MII) in the treatment of mice with drug-induced liver injury—specifically, to determine its effects on plasma metabolites. Moreover, the possible mechanism of its intervention in lipid metabolism and amino acid metabolism through the liver protective effect was preliminarily explored, combined with network pharmacology. The liver injury model of mice was established using acetaminophen (APAP). The protective effect of MII on the mice model was evaluated using pathological tissue sections and biochemical indices such as alanine transaminase (ALT), aspartate aminotransferase (AST), and superoxide dismutase (SOD). Metabolomics analysis of plasma was performed using the UHPLC-QTOF/MS technique to screen for potential biomarkers and enriched metabolic pathways. The potential targets and pathways of MII were predicted by network pharmacology, and the mechanism was verified by Western blot analysis. MII significantly improved the pathological liver changes in mice with liver injury. The content of ALT and AST was decreased, and the activity of SOD was increased significantly (p < 0.05, 0.01). A total of 29 potential biomarkers were identified in the metabolomics analysis, mainly involving seven pathways, such as lipid metabolism and amino acid metabolism. A total of 44 intersection targets of MII in the treatment of liver injury were obtained by network pharmacology, involving lipid metabolism and other related pathways. Western blot analysis results showed that MII could significantly reduce the expression of JAK2 and STAT3. MII can effectively ameliorate liver injury in modeled mice through related pathways such as lipid metabolism and amino acid metabolism. This study could provide not only a scientific basis for the elucidation of the mechanism of action of MII in exerting a hepatoprotective effect, but also a reference for its rational clinical application. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

17 pages, 8591 KiB  
Article
Magnesium Isoglycyrrhizinate Attenuates Anti-Tuberculosis Drug-Induced Liver Injury by Enhancing Intestinal Barrier Function and Inhibiting the LPS/TLRs/NF-κB Signaling Pathway in Mice
by Jin-Yu Gong, Huan Ren, Hui-Qing Chen, Kai Xing, Chen-Lin Xiao and Jian-Quan Luo
Pharmaceuticals 2022, 15(9), 1130; https://doi.org/10.3390/ph15091130 - 9 Sep 2022
Cited by 17 | Viewed by 3562
Abstract
Liver injury caused by first-line anti-tuberculosis (anti-TB) drugs accounts for a high proportion of drug-induced liver injury (DILI), and gut microbiota and intestinal barrier integrity have been shown to be involved in the development of DILI. Magnesium isoglycyrrhizinate (MgIG) is the fourth-generation glycyrrhizic [...] Read more.
Liver injury caused by first-line anti-tuberculosis (anti-TB) drugs accounts for a high proportion of drug-induced liver injury (DILI), and gut microbiota and intestinal barrier integrity have been shown to be involved in the development of DILI. Magnesium isoglycyrrhizinate (MgIG) is the fourth-generation glycyrrhizic acid preparation, which is well documented to be effective against anti-TB DILI, but the underlying mechanism is largely unclear. In the present study, we established a BALB/c mice animal model of the HRZE regimen (39 mg/kg isoniazid (H), 77 mg/kg rifampicin (R), 195 mg/kg pyrazinamide (Z), and 156 mg/kg ethambutol (E))-induced liver injury to investigate the protective effect of MgIG against anti-TB DILI and underlying mechanisms. The results demonstrated that intraperitoneal injection of MgIG (40 mg/kg) significantly ameliorated HRZE-induced liver injury by reducing alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (AKP), and malondialdehyde (MDA) levels and improved liver pathological changes. Species composition analysis of gut microbiota showed that Lactobacillus was the only probiotic that was down-regulated by HRZE and recovered by MgIG. In addition, MgIG attenuated HRZE-induced intestinal pathology, significantly decreased HRZE-induced intestinal permeability by increasing the protein expression of tight junction protein 1 (ZO-1) and occludin, decreased HRZE-induced high lipopolysaccharide (LPS) levels, and further markedly attenuated mRNA expression levels of TNF-α, IL-6, TLR2, TLR4, and NF-κB. Supplementation with Lactobacillus rhamnosus JYLR-005 (>109 CFU/day/mouse) alleviated HRZE-induced liver injury and inflammation in mice. In summary, MgIG effectively ameliorated HRZE-induced liver injury by restoring the abundance of Lactobacillus, enhancing intestinal barrier function, and further inhibiting the activation of the LPS/TLRs/NF-κB signaling pathway. Regulating gut microbiota and promoting the integrity of intestinal barrier function may become a new direction for the prevention and treatment of anti-TB DILI. Full article
(This article belongs to the Special Issue Drug-Induced and Herbal Hepatotoxicity and Methods of Its Prevention)
Show Figures

Graphical abstract

Back to TopTop