Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = lung fibrosis, bone formation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2563 KiB  
Review
The Intricate Process of Calcification in Granuloma Formation and the Complications Following M. tuberculosis Infection
by Nickolas Yedgarian, Jacqueline Agopian, Brandon Flaig, Fouad Hajjar, Arshavir Karapetyan, Kannan Murthy, Ani Patrikyan, Kirakos Tomas, Kevin Tumanyan, Mohammad J. Nasiri, Selvakumar Subbian and Vishwanath Venketaraman
Biomolecules 2025, 15(7), 1036; https://doi.org/10.3390/biom15071036 - 17 Jul 2025
Viewed by 571
Abstract
Mycobacterium tuberculosis—an acid-fast staining bacterium—is a serious global health challenge that can have both short-term and long-term complications. Although the immune response helps trap the infection, it can also cause necrosis and calcification, leading to lung tissue damage. Calcification is a known [...] Read more.
Mycobacterium tuberculosis—an acid-fast staining bacterium—is a serious global health challenge that can have both short-term and long-term complications. Although the immune response helps trap the infection, it can also cause necrosis and calcification, leading to lung tissue damage. Calcification is a known outcome of chronic granuloma evolution in TB. Multiple pathways contribute to fibrosis and calcification; some examples are IL-1β, TGF-β, and TNF-α. Current antifibrotic drugs, such as nintedanib and pirfenidone, are effective but may increase the risk of latent tuberculosis reactivation in certain patients. Experimental therapies such as artemisinin derivatives have shown promise in preclinical TB fibrosis models, while cell-based therapies like bone marrow-derived mononuclear cells are also under early investigation for dual antifibrotic and immunomodulatory effects. This literature review will explore recent studies on the pathogenesis of M. tuberculosis, the mechanisms underlying calcification in granuloma formation, and subsequent complications of the disease process. Full article
Show Figures

Figure 1

27 pages, 1706 KiB  
Review
The Multiple Roles of Periostin in Non-Neoplastic Disease
by Lina Yang, Tongtong Guo, Yuanyuan Chen and Ka Bian
Cells 2023, 12(1), 50; https://doi.org/10.3390/cells12010050 - 22 Dec 2022
Cited by 18 | Viewed by 5257
Abstract
Periostin, identified as a matricellular protein and an ECM protein, plays a central role in non-neoplastic diseases. Periostin and its variants have been considered to be normally involved in the progression of most non-neoplastic diseases, including brain injury, ocular diseases, chronic rhinosinusitis, allergic [...] Read more.
Periostin, identified as a matricellular protein and an ECM protein, plays a central role in non-neoplastic diseases. Periostin and its variants have been considered to be normally involved in the progression of most non-neoplastic diseases, including brain injury, ocular diseases, chronic rhinosinusitis, allergic rhinitis, dental diseases, atopic dermatitis, scleroderma, eosinophilic esophagitis, asthma, cardiovascular diseases, lung diseases, liver diseases, chronic kidney diseases, inflammatory bowel disease, and osteoarthrosis. Periostin interacts with protein receptors and transduces signals primarily through the PI3K/Akt and FAK two channels as well as other pathways to elicit tissue remodeling, fibrosis, inflammation, wound healing, repair, angiogenesis, tissue regeneration, bone formation, barrier, and vascular calcification. This review comprehensively integrates the multiple roles of periostin and its variants in non-neoplastic diseases, proposes the utility of periostin as a biological biomarker, and provides potential drug-developing strategies for targeting periostin. Full article
(This article belongs to the Section Cell Motility and Adhesion)
Show Figures

Figure 1

29 pages, 3234 KiB  
Review
MicroRNA-214 in Health and Disease
by Meer M. J. Amin, Christopher J. Trevelyan and Neil A. Turner
Cells 2021, 10(12), 3274; https://doi.org/10.3390/cells10123274 - 23 Nov 2021
Cited by 32 | Viewed by 5286
Abstract
MicroRNAs (miRNAs) are endogenously expressed, non-coding RNA molecules that mediate the post-transcriptional repression and degradation of mRNAs by targeting their 3′ untranslated region (3′-UTR). Thousands of miRNAs have been identified since their first discovery in 1993, and miR-214 was first reported to promote [...] Read more.
MicroRNAs (miRNAs) are endogenously expressed, non-coding RNA molecules that mediate the post-transcriptional repression and degradation of mRNAs by targeting their 3′ untranslated region (3′-UTR). Thousands of miRNAs have been identified since their first discovery in 1993, and miR-214 was first reported to promote apoptosis in HeLa cells. Presently, miR-214 is implicated in an extensive range of conditions such as cardiovascular diseases, cancers, bone formation and cell differentiation. MiR-214 has shown pleiotropic roles in contributing to the progression of diseases such as gastric and lung cancers but may also confer cardioprotection against excessive fibrosis and oxidative damage. These contrasting functions are achieved through the diverse cast of miR-214 targets. Through silencing or overexpressing miR-214, the detrimental effects can be attenuated, and the beneficial effects promoted in order to improve health outcomes. Therefore, discovering novel miR-214 targets and understanding how miR-214 is dysregulated in human diseases may eventually lead to miRNA-based therapies. MiR-214 has also shown promise as a diagnostic biomarker in identifying breast cancer and coronary artery disease. This review provides an up-to-date discussion of miR-214 literature by describing relevant roles in health and disease, areas of disagreement, and the future direction of the field. Full article
(This article belongs to the Collection microRNAs in Health and Diseases)
Show Figures

Figure 1

18 pages, 4005 KiB  
Article
DROSHA-Dependent AIM2 Inflammasome Activation Contributes to Lung Inflammation during Idiopathic Pulmonary Fibrosis
by Soo Jung Cho, Kyoung Sook Hong, Ji Hun Jeong, Mihye Lee, Augustine M. K. Choi, Heather W. Stout-Delgado and Jong-Seok Moon
Cells 2019, 8(8), 938; https://doi.org/10.3390/cells8080938 - 20 Aug 2019
Cited by 23 | Viewed by 5872
Abstract
Idiopathic pulmonary fibrosis (IPF) has been linked to chronic lung inflammation. Drosha ribonuclease III (DROSHA), a class 2 ribonuclease III enzyme, plays a key role in microRNA (miRNA) biogenesis. However, the mechanisms by which DROSHA affects the lung inflammation during idiopathic pulmonary fibrosis [...] Read more.
Idiopathic pulmonary fibrosis (IPF) has been linked to chronic lung inflammation. Drosha ribonuclease III (DROSHA), a class 2 ribonuclease III enzyme, plays a key role in microRNA (miRNA) biogenesis. However, the mechanisms by which DROSHA affects the lung inflammation during idiopathic pulmonary fibrosis (IPF) remain unclear. Here, we demonstrate that DROSHA regulates the absent in melanoma 2 (AIM2) inflammasome activation during idiopathic pulmonary fibrosis (IPF). Both DROSHA and AIM2 protein expression were elevated in alveolar macrophages of patients with IPF. We also found that DROSHA and AIM2 protein expression were increased in alveolar macrophages of lung tissues in a mouse model of bleomycin-induced pulmonary fibrosis. DROSHA deficiency suppressed AIM2 inflammasome-dependent caspase-1 activation and interleukin (IL)-1β and IL-18 secretion in primary mouse alveolar macrophages and bone marrow-derived macrophages (BMDMs). Transduction of microRNA (miRNA) increased the formation of the adaptor apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) specks, which is required for AIM2 inflammasome activation in BMDMs. Our results suggest that DROSHA promotes AIM2 inflammasome activation-dependent lung inflammation during IPF. Full article
(This article belongs to the Special Issue Mechanisms of Inflammasome Activation)
Show Figures

Graphical abstract

20 pages, 271 KiB  
Review
Controversial Impact of Sirtuins in Chronic Non-Transmissible Diseases and Rehabilitation Medicine
by Alessia Mongelli and Carlo Gaetano
Int. J. Mol. Sci. 2018, 19(10), 3080; https://doi.org/10.3390/ijms19103080 - 9 Oct 2018
Cited by 6 | Viewed by 4448
Abstract
A large body of evidence reports about the positive effects of physical activity in pathophysiological conditions associated with aging. Physical exercise, alone or in combination with other medical therapies, unquestionably causes reduction of symptoms in chronic non-transmissible diseases often leading to significant amelioration [...] Read more.
A large body of evidence reports about the positive effects of physical activity in pathophysiological conditions associated with aging. Physical exercise, alone or in combination with other medical therapies, unquestionably causes reduction of symptoms in chronic non-transmissible diseases often leading to significant amelioration or complete healing. The molecular basis of this exciting outcome—however, remain largely obscure. Epigenetics, exploring at the interface between environmental signals and the remodeling of chromatin structure, promises to shed light on this intriguing matter possibly contributing to the identification of novel therapeutic targets. In this review, we shall focalize on the role of sirtuins (Sirts) a class III histone deacetylases (HDACs), which function has been frequently associated, often with a controversial role, to the pathogenesis of aging-associated pathophysiological conditions, including cancer, cardiovascular, muscular, neurodegenerative, bones and respiratory diseases. Numerous studies, in fact, demonstrate that Sirt-dependent pathways are activated upon physical and cognitive exercises linking mitochondrial function, DNA structure remodeling and gene expression regulation to designed medical therapies leading to tangible beneficial outcomes. However, in similar conditions, other studies assign to sirtuins a negative pathophysiological role. In spite of this controversial effect, it is doubtless that studying sirtuins in chronic diseases might lead to an unprecedented improvement of life quality in the elderly. Full article
(This article belongs to the Special Issue Sirtuins and Epigenetics in Aging and Diseases)
12 pages, 462 KiB  
Review
The Potential for Resident Lung Mesenchymal Stem Cells to Promote Functional Tissue Regeneration: Understanding Microenvironmental Cues
by Robert F. Foronjy and Susan M. Majka
Cells 2012, 1(4), 874-885; https://doi.org/10.3390/cells1040874 - 19 Oct 2012
Cited by 73 | Viewed by 11502
Abstract
Tissue resident mesenchymal stem cells (MSCs) are important regulators of tissue repair or regeneration, fibrosis, inflammation, angiogenesis and tumor formation. Bone marrow derived mesenchymal stem cells (BM-MSCs) and endothelial progenitor cells (EPC) are currently being considered and tested in clinical trials as a [...] Read more.
Tissue resident mesenchymal stem cells (MSCs) are important regulators of tissue repair or regeneration, fibrosis, inflammation, angiogenesis and tumor formation. Bone marrow derived mesenchymal stem cells (BM-MSCs) and endothelial progenitor cells (EPC) are currently being considered and tested in clinical trials as a potential therapy in patients with such inflammatory lung diseases including, but not limited to, chronic lung disease, pulmonary arterial hypertension (PAH), pulmonary fibrosis (PF), chronic obstructive pulmonary disease (COPD)/emphysema and asthma. However, our current understanding of tissue resident lung MSCs remains limited. This review addresses how environmental cues impact on the phenotype and function of this endogenous stem cell pool. In addition, it examines how these local factors influence the efficacy of cell-based treatments for lung diseases. Full article
(This article belongs to the Special Issue Tissue and Organ Regeneration)
Show Figures

Figure 1

Back to TopTop