Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = lunar swing-by

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 2131 KB  
Article
Low-Energy Transfer Design of Heliocentric Formation Using Lunar Swingby on the Example of LISA
by Jia Yang, Zhong Zhang, Fanghua Jiang and Junfeng Li
Aerospace 2023, 10(1), 18; https://doi.org/10.3390/aerospace10010018 - 25 Dec 2022
Cited by 6 | Viewed by 3068
Abstract
Space-based gravitational wave (GW) detection at low frequencies is of great scientific significance and has received extensive attention in recent years. This work designs and optimizes the low-energy transfer of the heliocentric formation of GW detectors, which starts from a geosynchronous transfer orbit [...] Read more.
Space-based gravitational wave (GW) detection at low frequencies is of great scientific significance and has received extensive attention in recent years. This work designs and optimizes the low-energy transfer of the heliocentric formation of GW detectors, which starts from a geosynchronous transfer orbit and targets an Earth-like orbit. Based on the example of the Laser Interferometer Space Antenna (LISA), the transfer is first designed in two-body dynamical models and then refined in simplified high-fidelity dynamical models that only consider the major orbital perturbations evaluated here. The main contributions of this work are to present an adaptive model continuation technique and to exploit the lunar swingby technique to reduce the problem-solving difficulty and velocity increment of orbital transfer, respectively. The adaptive model continuation technique fully reveals the effect of perturbations and rapidly iterates the solutions to the simplified models. The simulation results show that the lunar swingby does reduce the energy needed to escape the Earth’s sphere of influence. It is found that the gravitation of the Earth–Moon system has a significant contribution to reducing the velocity increment. The solution of low-energy transfer in the simplified models is that the duration is 360.6615 days and the total velocity increment is 0.8468 km/s. Full article
(This article belongs to the Special Issue Emerging Space Missions and Technologies)
Show Figures

Figure 1

21 pages, 6761 KB  
Article
Trajectories Derived from Periodic Orbits around the Lagrangian Point L1 and Lunar Swing-Bys: Application in Transfers to Near-Earth Asteroids
by Rebeca S. Ribeiro, Cristiano F. de Melo and Antônio F. B. A. Prado
Symmetry 2022, 14(6), 1132; https://doi.org/10.3390/sym14061132 - 31 May 2022
Cited by 5 | Viewed by 3480
Abstract
To present a set of trajectories derived from the retrograde periodic orbits around the Lagrangian equilibrium point L1, this paper considers the Circular Restricted Three-body Problem with Earth-Moon masses (CR3BP), the Restricted Bicircular, and Full Four-Body Sun-Earth-Moon-spacecraft Problems (BCR4BP and FR4BP, [...] Read more.
To present a set of trajectories derived from the retrograde periodic orbits around the Lagrangian equilibrium point L1, this paper considers the Circular Restricted Three-body Problem with Earth-Moon masses (CR3BP), the Restricted Bicircular, and Full Four-Body Sun-Earth-Moon-spacecraft Problems (BCR4BP and FR4BP, respectively). These periodic orbits are predicted by the dynamics of the CR3BP. To generate the trajectories of this set, first, slightly different increments of velocity (∆Vs) from those needed to generate periodic orbits around L1 are applied to a spacecraft in circular low Earth orbits in the same direction of their motion when the Earth, the spacecraft, and the Moon are aligned in this order. Thus, translunar trajectories derived from the periodic orbits are obtained and they will lead the spacecraft to the vicinity of the Moon. Depending on the values of the |∆Vs|, which are also functions of the relative positioning between the Sun, the Earth, and the Moon, three types of trajectories of interest are found: Collision with the Moon, escape, and geocentric orbits with large semi-major axes. For a well-defined interval of the |∆Vs|, the trajectories accomplish swing-bys with the Moon and obtain energy to escape from the Earth–Moon system and reach Near-Earth Asteroids (NEAs) between the orbits of Venus and Mars. This procedure reduces the costs of inserting spacecraft into transfer trajectories to a set of NEAs in terms of the required |∆V| by up to 5% when compared to Lambert’s problem, for example. This work also presents analyses of examples of transfers to the NEAs 3361 Orpheus, 99942 Apophis, and 65803 Didymos, from 2025 on. Full article
(This article belongs to the Special Issue Advances in Mechanics and Control)
Show Figures

Figure 1

Back to TopTop