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Abstract: Space-based gravitational wave (GW) detection at low frequencies is of great scientific
significance and has received extensive attention in recent years. This work designs and opti-
mizes the low-energy transfer of the heliocentric formation of GW detectors, which starts from a
geosynchronous transfer orbit and targets an Earth-like orbit. Based on the example of the Laser
Interferometer Space Antenna (LISA), the transfer is first designed in two-body dynamical models
and then refined in simplified high-fidelity dynamical models that only consider the major orbital
perturbations evaluated here. The main contributions of this work are to present an adaptive model
continuation technique and to exploit the lunar swingby technique to reduce the problem-solving
difficulty and velocity increment of orbital transfer, respectively. The adaptive model continuation
technique fully reveals the effect of perturbations and rapidly iterates the solutions to the simplified
models. The simulation results show that the lunar swingby does reduce the energy needed to escape
the Earth’s sphere of influence. It is found that the gravitation of the Earth–Moon system has a
significant contribution to reducing the velocity increment. The solution of low-energy transfer in the
simplified models is that the duration is 360.6615 days and the total velocity increment is 0.8468 km/s.

Keywords: gravitational wave detection; LISA; low-energy transfer; lunar swingby; model continuation

1. Introduction

Albert Einstein predicted the existence of gravitational waves (GW) based on general
relativity, starting the research and discussion on gravitational-wave astronomy. The orbital-
period decay measurements of binary pulsar PSR 1913+16 are consistent with the gravity
theory of general relativity, indirectly suggesting the existence of GW [1,2]. However,
the most convincing evidence for the existence of GW should be their direct detection, which
is much more difficult. After decades of efforts, the Laser Interferometer Gravitational-
Wave Observatory (LIGO) observed a transient GW signal named GW150914 in 2015,
demonstrating the existence of binary stellar-mass black hole systems, which is the first
direct detection of GW in human history [3]. The signal GW170817 [4], observed in 2017 by
the Advanced LIGO and Advanced Virgo gravitational-wave detectors, is the first from
binary neutron star inspiral. The signal GW200105 [5], observed in 2020 by LIGO–Virgo
detector network, is the first from two compact binary coalescences. Henceforward a new
observational window in physics has been opened.

GWs are unique and intensely informative about astrophysical processes, supporting
the exploration of some of the most pressing problems in fundamental physics, astrophysics,
and cosmology. The current detection approaches include ground-based detectors, space-
based detectors, pulsar timing arrays, cosmic microwave background polarization, etc.
Of the observatories mentioned above, those ground-based detectors detect the high-
frequency part of the GW spectrum from ∼10 Hz to ∼10 kHz. The sensitivity of the
ground-based detector is limited by the seismic noise, thermal noise, dynamic gravity
gradient noise, quantum noise, and anthropogenic noise. Therefore, the relatively pure and
low-frequency GWs are expected to be observed by space-based detectors [6,7]. LISA is

Aerospace 2023, 10, 18. https://doi.org/10.3390/aerospace10010018 https://www.mdpi.com/journal/aerospace

https://doi.org/10.3390/aerospace10010018
https://doi.org/10.3390/aerospace10010018
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com
https://orcid.org/0000-0001-8801-7576
https://orcid.org/0000-0003-0728-3202
https://orcid.org/0000-0001-8411-5603
https://doi.org/10.3390/aerospace10010018
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com/article/10.3390/aerospace10010018?type=check_update&version=2


Aerospace 2023, 10, 18 2 of 30

an ESA-led space-based detector collaborating with NASA with well-proven technology.
It was proposed by the LISA Consortium (an international collaboration of scientists) to
observe GWs in the frequency range from ∼ 10−4 Hz to ∼ 10−1 Hz in the last century and
was selected as a cornerstone mission in the ESA Horizon 2000-plus program [8]. LISA
Pathfinder (LPF) is a dedicated technology validation mission for space-based detectors [9]
operating from 2016 to 2017. LPF measured the essential performance and operation
related to the stability, such as the drag-free and attitude control system [10] and noise
performance [11], and validated the technical maturity of the LISA mission [12].

ESA made a proposal on the detailed concepts of the LISA mission and planned a
launch around 2030 [13]. In this proposal, LISA is an equilateral triangle constellation
separated by 2.5× 109 m in Earth-trailing or Earth-leading heliocentric orbits at an angular
distance of around 20 degrees. Existing orbital studies on LISA mainly concentrated
on the formation design [14–17], but fewer on the orbital transfer. In the original LISA
mission, the total velocity increment of three main transfer maneuvers in 16 months of
transfer duration is estimated between 1.5∼2.1 km/s [18]. Bastante et al. proposed a
transfer strategy of five impulses for adjusting the inclination, eccentricity, and phase
angle to give a solution guess for solving the low-thrust transfer optimization problem
through a gradient restoration algorithm [19]. Sweetser analyzed the end-to-end impulsive
transfer process of a constellation of three spacecraft launched together into a heliocentric
orbit trailing the Earth’s orbit by 20 degrees [20]. Xia et al. analyzed the relationship
between the total velocity increment and the flight time and the relationship between the
total velocity increment and the trailing angle behind the Earth by solving the Lambert’s
problem. They further designed the transfer orbits, including the launch stage and the
separation stage [21]. Joffre et al. studied the transfer design from the Earth towards Earth-
Displaced Heliocentric Orbits in the Sun–Mean Earth–Moon Barycentre rotating frame [22].
The seasonal variations of the required velocity increment with the direct transfer strategy
were calculated and analyzed, and then other alternative transfer strategies were suggested
to reduce the fuel consumption and improve the compatibility of the launch. Martens et al.
considered the relationship between the transfer velocity increment and the location of the
constellation and optimized them together. They designed the transfer orbit using solar
electric propulsion and analyzed the effect of insertion errors in the navigation process on
the constellation stability [23].

The above studies involve the design of LISA’s transfer orbits. It is obvious that
the optimal transfer design of heliocentric formation reduces the fuel requirement for
the GW observation mission. To achieve this purpose, a practical approach is to fully
consider and exploit the effects of multi-body dynamics [24,25]. However, among the
existing studies on the transfer design of the GW detectors, most are based on the two-body
dynamical model, but few consider multi-body effects. On the one hand, the transfer
design results in the two-body model have not yet been improved in any high-fidelity
model [20,21]. For the transfer orbit of the GW detectors, the effect of the multi-body
dynamics is significant [26,27], and the error of the orbit propogation under the two-body
model should be relatively large. The transfer design under the Sun–Earth three-body
model is more accurate than that under the heliocentric two-body model, but other complex
perturbations still need to be considered [22]. This work further explores the effects of
other perturbations on the transfer. The orders of magnitude of multiple perturbations are
calculated, and those which significantly impact the orbit are identified. The adaptive model
continuation technique is proposed in this paper to obtain quantitatively the influence
of each perturbation on the velocity increment of the transfer. On the other hand, most
existing studies have only completed the design of heliocentric transfer orbits, assuming
that the starting of the transfer is on the Earth escape orbit [19,20,23]. However, the transfer
within the Earth’s sphere of influence (SOI) should be elaborately designed to reduce the
overall launch and transfer costs [28], especially to increase the energy to escape the Earth’s
SOI by the lunar swingby [29–31]. It is well known that the geosynchronous transfer
orbit (GTO) is always used as an intermediate orbit for spacecraft with the destinations
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of high-altitude orbits such as geosynchronous or geostationary orbits. Thus, rather than
directly launching the spacecraft into an Earth escape orbit, this work starts the transfer
design from a GTO that can be reached by Ariane 5 [32] and, of course, is still within
the Earth’s SOI. We are devoted to working out a well-designed low-energy transfer that
positively exploits the perturbations in the Earth’s SOI to reduce the total velocity increment
of transfer. Based on the above considerations, this work studies the design of low-energy
impulsive transfer from a GTO to the center of the heliocentric formation in simplified
high-fidelity dynamical models by utilizing the lunar swingby technique and the adaptive
model continuation technique.

The remainder of this paper is organized as follows. In Section 2, the optimization
problem and the dynamics are introduced. In Section 3, the approach for low-energy
transfer design is described in detail. Specific design results for each stage are given
in Section 4. Finally, conclusions are drawn in Section 5.

2. Problem Description

In this section, the optimization problem is described, and the reference frames and
equations of motion for orbital transfer are presented.

2.1. Optimization Problem Statement

The start of the transfer is set to a GTO. The initial state of the spacecraft (S/C) is
described by the classical orbital elements (COE), of which the values of semi-major axis (a),
eccentricity (e), inclination (i), and argument of perigee (ω) are fixed, and the right ascension
of ascending node (Ω) and the true anomaly ( f ) are considered as optimization variables.
The end of the transfer is determined as an Earth-Tailing Heliocentric Orbit with 20 degrees
behind the Earth [13], which is the center of the constellation, and the angle between the
plane of the constellation and the ecliptic is 60 degrees, as shown in Figure 1. The high-
thrust chemical thrust is applied to perform the orbital maneuvers, and the maneuvering
process is considered as instantaneous impulses. Assume that the impulse vector is denoted
by ∆v, and the time moments immediately before and after the impulse are denoted by t−

and t+, respectively. The position and velocity vectors satisfy the following relations:{
r(t+) = r(t−)
v(t+) = v(t−) + ∆v

(1)

20
1 AU

Sun

Earth

S/C

60
92.5 10  m

Figure 1. Schematic diagram of LISA.

For the general multi-impulse transfer problem, the process can be described as
follows: the S/C maneuvers from a GTO into the transfer orbit at the beginning and reaches
the terminal orbit at the end after several impulses. The transfer design problem in this
work can be constructed as a nonlinear optimization problem. The optimization variables
include the time moments and impulse vectors of several maneuvers. The problem needs
to meet the boundary conditions as follows:{

a(ts) = aGTO, e(ts) = eGTO, i(ts) = iGTO, ω(ts) = ωGTO

a
(

t f

)
= aE, e

(
t f

)
= eE, i

(
t f

)
= iE, Ω

(
t f

)
= ΩE, ω

(
t f

)
= ωE, f

(
t f

)
= fE − 20◦

(2)
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where ts and t f represent the initial and terminal time moments, respectively. The subscripts,
GTO and E, represent the COE of the GTO and the Earth, respectively. The time constraint
needs to be satisfied:

t f − ts < Tmax (3)

Other engineering constraints are not considered in this work. In practical problems,
if requirements for communication, measurement, control, etc., need to be satisfied, their
constraints should be added to the optimization problem. The objective is to minimize the
total velocity increment:

min J = ∆V =
n

∑
i=1
‖∆vi‖ (4)

where n denotes the total number of impulses, and ‖·‖ represents the 2-norm.

2.2. Reference Frames

In this work, the following frames are used to describe the motion of the S/C.

1. J2000 Earth-centered inertial (ECI) frame: The origin is at the center of the Earth.
The basic plane (XY plane) is the mean equator of epoch J2000.0, and the X-axis points
to the intersection of the mean equator of J2000.0 with the mean ecliptic plane.

2. J2000 Moon-centered inertial (MCI) frame: The origin is at the center of the Moon,
and the directions of the three axes are the same as the J2000 ECI frame.

3. Heliocentric equatorial reference frame (HERF): The origin is at the center of the Sun,
and the directions of the three axes are the same as the J2000 ECI frame.

Let us denote the position and velocity vectors by r and v, respectively. The superscript
(E) denotes the position and velocity vectors with respect to the Earth in the J2000 ECI
frame, the superscript (M) denotes the pair with respect to the Moon in the J2000 MCI frame,
and the superscript (S) denotes the pair with respect to the Sun in the HERF. The subscripts
represent the pair of the spacecraft, the Moon, and the Earth, respectively. The following
relationships exist when describing the motion of spacecraft in different frames.{

r(E)S/C = r(M)
S/C + r(E)Moon , v(E)

S/C = v(M)
S/C + v(E)

Moon

r(S)S/C = r(E)S/C + r(S)Earth , v(S)
S/C = v(E)

S/C + v(S)
Earth

(5)

When calculating the motion of spacecraft for orbital transfer, the following frames
are also involved:

1. The second realization of the International Celestial Reference Frame (ICRF2) [33]:
The origin is the solar system barycenter, with the basic plane (XY plane) close to the
mean equator of epoch J2000.0 and the X-axis close to the intersection of the mean
equator of J2000.0 with the mean ecliptic plane. The planetary and lunar ephemerides
such as Jet Propulsion Laboratory (JPL)’s DE430 and DE431 [34] are described in this
frame.

2. Earth Centered Earth Fixed (ECEF) frame: The origin is at the center of the Earth.
The X-axis is at the intersection of the Greenwich Meridian and the equatorial plane.
The Z-axis is collinear with the Earth’s spin axis and points to the north.

The ICRF2 is an improved version of the first realization of the International Celestial
Reference Frame (ICRF1) [35]. The ICRF1 is approximately consistent with the FK5 pole of
J2000.0, and there are differences between the mean J2000.0 pole and the ICRF1 pole of ≈19
mas in ecliptic longitude and ≈4 mas in obliquity, which are within the error of the stellar
realization. Therefore, the differences in the directions of the axes between the ICRF2 and
HERF are not considered in this work.

Define the following rotation matrices:



Aerospace 2023, 10, 18 5 of 30

Rx(α) =

 1 0 0
0 cos α − sin α
0 sin α cos α

, Ry(α) =

 cos α 0 sin α
0 1 0

− sin α 0 cos α

, Rz(α) =

 cos α − sin α 0
sin α cos α 0

0 0 1

 (6)

Suppose (r)ECEF and (r)ECI denote the column arrays of the same vector in the J2000
ECI frame and ECEF frame, respectively, and the transition relationship between them
is [36,37]:

(r)ECEF = REERET RTMRMJ(r)ECI (7)

The expressions for these matrices are as follows:
REE = Ry

(
xp
)

Rx
(
yp
)

RET = Rz(−θGST)
RTM = Rx(ε̄ + ∆ε)Rz(∆ψ)Rx(−ε̄)
RMJ = RE(zA)Ry(−θA)Rz(ζA)

(8)

where xp and yp denote the components of polar motion, θGST denotes the Greenwich side-
real time, ζA, zA, and θA denote the precession of the equinoxes, ε̄ denotes the mean obliq-
uity, and ∆ψ and ∆ε denote the nutations in longitude and in obliquity, respectively [38].
The polar motion is set to zero due to its unpredictability many years later. Note that the
transformation between the ECI and ECEF frames, expressed by Equations (7) and (8),
will be used in the high-fidelity dynamical model for the geocentric orbits that considers
perturbations, including especially the Earth’s nonspherical gravitation. This work will
design and optimize the low-energy transfer in a simplified high-fidelity dynamical model
for the geocentric orbits that regards the Earth as a rotating ellipsoid with regular angular
velocity and will then investigate the solution error between the simplified high-fidelity
model and the high-fidelity model, which will prove to be very small.

2.3. Equations of Motion for Orbital Transfer

The motion of the S/C can be divided into different phases according to the planetary
SOI, and different central bodies are chosen to establish the equations of motion. According
to the Earth’s SOI, the transfer orbit of S/C is composed of geocentric orbits and heliocentric
orbits. As described in the following, the lunar swingby technique is adopted in order
to increase the escape energy and reduce the required velocity increment of the transfer.
Therefore, the selenocentric orbits are also included in the transfer. The transfer process
of the spacecraft is shown in Figure 2. The 1st and 3rd segments belong to geocentric
orbits, the 2nd segment belongs to selenocentric orbits, and the 4th segment belongs to
heliocentric orbits.

Departure 

from a GTO
Enter the lunar SOI

Leave the lunar SOI

Arrival at the center of 

the target constellation

1

2

3

4

Leave the 

Earth’s SOI

Lunar SOI

Earth’s SOI

Figure 2. Schematic diagram of the transfer process.

In this work, there are three kinds of dynamical models for calculating the geocen-
tric and heliocentric orbits: the two-body dynamical model, the simplified high-fidelity
dynamical model, and the high-fidelity dynamical model, as shown in Tables 1 and 2.
There are two dynamical models for calculating the selenocentric orbits: the two-body
dynamical model and the simplified high-fidelity dynamical model, as shown in Table 3.
In Tables 1–3, the symbol é means that the perturbation is not considered, and the symbol
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Ë means that the perturbation is considered. The transfer design will be first completed
in the two-body models corresponding to the geocentric and heliocentric orbits, where
the lunar swingby is equated to an instantaneous impulse. The segments of transfer orbit
obtained in the two-body models will be used to calculate the perturbation accelerations
counted into the high-fidelity models. We will simplify the high-fidelity models according
to the orders of magnitude of the perturbation accelerations and the errors in the terminal
state. Then, the transfer will be refined and corrected in the simplified high-fidelity models.
Finally, the terminal state errors and the computational times of the transfer orbit will
be individually compared between the simplified high-fidelity and high-fidelity models
to support this simplification. The equations of motion of the spacecraft moving in the
simplified high-fidelity models are given in this section, and the equations for the rest of
the perturbation accelerations counted into the high-fidelity models can be referred to [36].

Table 1. Different dynamical models of the geocentric orbits.

Perturbation Two-Body Dynamical Model Simplified High-Fidelity
Dynamical Model

High-Fidelity Dynamical
Model

Lunar gravitation é Ë Ë
Nonspherical gravitation é Ë Ë

Atmospheric drag é Ë Ë
Solar gravitation é Ë Ë
Solar radiation é Ë Ë

Relativistic effects é é Ë
Solid tides é é Ë

Ocean tides é é Ë
Rotation deformation é é Ë

Table 2. Different dynamical models of the heliocentric orbits.

Perturbation Two-Body Dynamical Model Simplified High-Fidelity
Dynamical Model

High-Fidelity Dynamical
Model

Mercury gravitation é Ë Ë
Venus gravitation é Ë Ë
Earth gravitation é Ë Ë
Mars gravitation é é Ë

Jupiter gravitation é Ë Ë
Saturn gravitation é é Ë
Uranus gravitation é é Ë

Neptune gravitation é é Ë
Pluto gravitation é é Ë
Lunar gravitation é Ë Ë

Solar radiation é Ë Ë

Table 3. Different dynamical models of the selenocentric orbits.

Perturbation Two-Body Dynamical Model Simplified High-Fidelity Dynamical Model

Earth gravitation é Ë
Solar gravitation é Ë
Solar radiation é Ë

2.3.1. Equations of Motion on Geocentric Orbits

In the J2000 ECI frame, the equations of motion of the S/C is given by:{
ṙ = v
v̇ = aC + aN + aD + aT + aR

(9)
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where r and v denote the position and velocity vectors with respect to the Earth in the
J2000 ECI frame, respectively, aC denotes the central gravitational acceleration of the
Earth, and aN , aD, aT , and aR denote the accelerations caused by the Earth’s nonspherical
gravitation, atmospheric drag, the third-body gravitation due to the Sun and Moon, and the
solar radiation, respectively. The specific expressions of the perturbation accelerations are
given below.

Since the Earth is not a regular sphere, the Earth’s nonspherical gravitation should
be considered in addition to the central celestial body gravitation. In the ECEF frame,
the potential function U of the Earth’s non-spherical gravitation is expressed in the form of
a spherical harmonic function [39]:

U =
µE

r

∞

∑
n=2

n

∑
m=0

(
RE

r

)n
P̄nm(sin ϕ)(C̄nm cos mλ + S̄nm sin mλ) (10)

where RE and µE are the Earth’s reference radius and gravitational constant, respectively, ϕ
and λ are the geocentric latitude and geocentric longitude of the S/C in the ECEF frame,
respectively, r is the geocentric distance, C̄nm and S̄nm are the normalized gravitational
coefficients, and P̄nm(u) is the normalized associated Legendre function of degree n and
order m with respect to the variable u. In the simplified model for the geocentric orbits
of this work, the Earth is simplified as a rotating ellipsoid, i.e., only C̄2,0 is considered,
and note that J2 = −C̄2,0 = 1.0826269× 10−3. Supposing the column array of r in the J2000
ECI frame is [x, y, z]T, the column array of the Earth’s nonspherical gravitation acceleration
(approximately equal to the J2 perturbation acceleration) is:

(
aN
)

ECI ≈
(

aJ2

)
ECI

=
3
2

µE J2R2
E

r5


5xz2

r2 − x
5yz2

r2 − y
5z3

r2 − 3z

 (11)

The acceleration of the atmospheric drag with area-mass ratio S/m is:

aD = −1
2

CD
S
m

ρ‖V‖V (12)

where CD is the atmospheric drag coefficient, ρ the atmospheric density at the location
of the S/C, and V the velocity of the S/C relative to the atmosphere, calculated by the
following equation:

V = v−ωE × r (13)

where r and v are the position and velocity of the S/C with respect to the J2000 ECI frame,
and ωE is the angular velocity vector of the Earth’s rotation. Supposing the column array
of v in the J2000 ECI frame is [vx, vy, vz]T, the column array of V in the J2000 ECI frame is
approximated by:

(V)ECI =

 vx + ωEy
vy −ωEx

vz

 (14)

where ωE = ‖ωE‖.
In addition to the Earth’s gravitation, the S/C is affected by the gravitation of the Sun,

Moon, and other large planets. For the geocentric orbits in this work, only the gravitation of
the Sun and Moon is considered. The perturbation acceleration of the third-body gravitation
on the S/C is:

aT = −∑
i

µi

(
r− ri

‖r− ri‖3 +
ri

‖ri‖3

)
(15)

where µi = Gmi denotes the gravitational constant of the celestial body i, and ri denotes
the position vector of the celestial body i with respect to the Earth in the J2000 ECI frame.
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Their column arrays of position vectors in the J2000 ECI frame are obtained directly from
the planetary and lunar ephemerides.

In the J2000 ECI frame, the acceleration of the S/C from the solar radiation is ex-
pressed as:

aR = KCR
S
m

Ls

4πc
r− rs

‖r− rs‖3 (16)

where r and rs denote the position vectors of the S/C and the Sun with respect to the Earth
in the J2000 ECI frame, respectively, CR the solar radiation coefficient, c the speed of light,
Ls the luminosity of the Sun, and K the visibility coefficient of the sunlight at the location of
the S/C and is related to the ground-shadow model used. In this work, the simplification
of K ≡ 1 is taken. The physical meanings of other symbols are the same as above.

2.3.2. Equations of Motion on Heliocentric Orbits

In the HERF, the equations of motion of the S/C is given by:{
ṙ = v
v̇ = aC + aT + aR

(17)

where r and v are the position and velocity with respect to the Sun in the HERF, respectively,
aC the central gravitational acceleration of the Sun, aT the acceleration of the third-body
gravitation due to the Earth–Moon system, Jupiter, Venus, and Mercury, and aR the acceler-
ation of the solar radiation.

The acceleration of the third-body gravitation aT is calculated by Equation (15), where
ri denotes the position vector of the celestial body i with respect to the Sun in the HERF,
and µi = Gmi denotes the gravitational constant of celestial body i. Their column arrays
of position vectors in the J2000 ECI frame are obtained directly from the planetary and
lunar ephemerides. The acceleration of the solar radiation aR is expressed by Equation (16),
where the vector difference r− rs should be replaced by r.

2.3.3. Equations of Motion on Selenocentric Orbits

In the J2000 MCI frame, the equations of motion of the S/C is given by:{
ṙ = v
v̇ = aC + aT + aR

(18)

where r and v are the position and velocity with respect to the Moon in the J2000 MCI frame,
respectively, aC the central gravitational acceleration of the Moon, aT the acceleration
of the third-body gravitation due to the Earth and Sun, and aR the acceleration of the
solar radiation.

The acceleration of the third-body gravitation aT is calculated by Equation (15), where
ri denotes the position vector of the celestial body i with respect to the Moon in the
J2000 MCI frame, and µi = Gmi denotes the gravitational constant of the celestial body
i. The acceleration of the solar radiation aR is calculated by Equation (16), where r and rs
here denote the position vectors of the S/C and the Sun with respect to the Moon in the
J2000 MCI frame, respectively, and the physical meanings of other symbols are the same as
above. Their column arrays of position vectors in the J2000 MCI frame are obtained directly
from the planetary and lunar ephemerides.

3. Low-Energy Transfer Design

The transfer design of heliocentric formation in the high-fidelity models has chal-
lenges such as strong nonlinearity, sensitivity to initial values, and multiple locally optimal
solutions. If the optimization problem is directly solved in the high-fidelity models, the com-
putational burden is great, and the orbital perturbations may not be well utilized to reduce
the velocity increment of the transfer. Therefore, the optimization is first carried out sev-
eral times in the two-body models to quickly obtain multiple locally optimal solutions as
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candidates. Together with simplifying the dynamical models in Section 2, an adaptive
model continuation technique will be proposed to iterate these multiple solutions from the
two-body models to the simplified high-fidelity models, which will be completed quickly.
Finally, the best solution among them is picked out as the design result. We compare the
orbital terminal states and computational times under different dynamical models and
verify that the simplification of the dynamical models is acceptable and effective.

In addition, the inclination of a GTO with respect to the Earth’s equator is 6◦, and the
angle between the equatorial plane and the ecliptic plane is about 23.43◦. The inclination
of the lunar orbit to the equatorial plane ranges from 18.28◦ to 28.58◦. It has potential to
utilize lunar gravitation to reduce the transfer energy.

3.1. Design of Lunar Swingby

Limited to the launch vehicle capacity and the energy requirement for later science
operation, the GW detection mission desires an ingenious transfer design with little transfer
energy. Swingby is usually considered to reduce the velocity increment or transfer time.
The orbit of the S/C is designed to pass near a planet and use its gravitation to increase the
energy, change the inclination, reduce the mission time, and achieve other purposes. In this
work, the lunar swingby is designed to reduce the velocity increment of transfer.

In the preliminary design, the swingby is modeled as an instantaneous impulse [40].
The differences in the positions and time moments immediately before and after the
swingby are not considered, and the corresponding positions are consistent with the
position of the swingby celestial body at the swingby time moment. In the lunar swingby,
let us denote the time moments immediately before and after the swingby by t− and t+,
respectively, and the position vectors of the S/C with respect to the Earth in the J2000 ECI
frame before and after the swingby by r− and r+, respectively. The position vector of the
Moon with respect to the Earth in the J2000 ECI frame at the time moment of the lunar
swingby is denoted by rM. The following relationships exist:{

t− = t+ = tM
r− = r+ = rM

(19)

The relative velocity between the S/C and the swingby celestial body is called hyper-
bolic excess speed and is denoted by v∞. Suppose that v−∞ denotes the hyperbolic excess
speed when entering the lunar SOI and v+

∞ denotes the hyperbolic excess speed when
leaving the lunar SOI. They hold the forms:{

v−∞ = v− − vM
v+

∞ = v+ − vM
(20)

where v− and v+ denote the velocity vectors of the S/C with respect to the Earth in the
J2000 ECI frame immediately before and after the swingby, respectively, and vM denotes
the position vector of the Moon with respect to the Earth in the J2000 ECI frame at the time
moment of lunar swingby.

When the S/C is within the lunar SOI, only the lunar gravitation is considered, which
means that the orbit of the S/C in the SOI is a hyperbolic curve. The turn angle of the
hyperbolic curve, δ, is determined by the swingby radius rM, the magnitude of hyperbolic
excess velocity v∞, and the gravitational constant of the Moon µM:

δ = 2arcsin(
µM

µM + rMv2
∞
) (21)

The hyperbolic excess speed v+
∞ lies on a circular cone with v−∞ as the axis and δ

as the top angle, and its magnitude is equal to v−∞. The coordinate system M − ξηζ is
established with the Moon as the center, as shown in Figure 3, where the ξ-axis is parallel
to v−∞, the ζ-axis is parallel to the normal of the plane formed by v−∞ and vM, and the ξ-axis,
η-axis and ζ-axis form a right-handed coordinate system.
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Figure 3. Schematic diagram of the swingby. (a) Hyperbolic orbit of the swingby. (b) Coordinate
system M− ξηζ.

The unit vectors of the coordinate axes are denoted by i, j, and k:

i =
v−∞
v∞

, k =
v−∞ × vM∥∥v−∞ × vM

∥∥ , j = k× i (22)

Assuming that no active orbital maneuver is applied during the swingby, the hyper-
bolic excess speed v+

∞ immediately after the lunar swingby and the velocity increment
∆vswingby obtained from the swingby are given by:

v+
∞ = v∞[cos δi + (sin δ sin ψ)j + (sin δ cos ψ)k] (23)

∆vswingby = v+
∞ − v−∞ = v+ − v−

= v∞[(cos δ− 1)i + (sin δ sin ψ)j + (sin δ cos ψ)k]
(24)

where ψ denotes the angle between the projection of v+
∞ in the ηζ plane and the ζ-axis,

with values in the range [0, 2π). When v−∞, rp, and ψ are determined, the velocity increment
of the swingby, ∆vswingby, and the hyperbolic excess speed after the swingby, v+

∞, can be
obtained. In general, it is necessary to apply a maneuver after swingby to ensure reaching
the next target.

The above impulsive model of swingby is an approximation, and it is suitable for the
preliminary design of orbit. When the perturbations before swingby and the lunar SOI
are considered, the initial state needs to be corrected if the effect of swingby in the initial
design is to be achieved. In lunar and interplanetary trajectories, the B-plane coordinate
system and B-plane parameters (notated as BT and BR) are efficient in describing the arrival
conditions at a target celestial body. The B-plane parameters are nearly linear functions of
the initial orbital conditions [41].

In the case of the lunar swingby, the B-plane is defined as the plane past the lunar center
and perpendicular to the incoming asymptote of the S/C, and the vector B points from
the lunar center to the intersection of the B-plane and the incoming asymptote, as shown
in Figure 4. The direction normal to the lunar orbit is adopted as the reference direction,
denoted by N. The B-plane coordinate system is described by three orthogonal unit vectors
S, R, and T , as shown in Figure 4. They are defined as:

S =
v−∞
‖v−∞‖

, T =
S× N
‖S× N‖ , R = S× T (25)

The B-plane parameters are the projections of B on T and R:

BT = B · T , BR = B · R (26)
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Figure 4. Schematic diagram of the B-plane. (a) Three-dimensional schematic diagram. (b) Trajec-
tory plane.

The target B-plane parameters denoted by BTt and BRt are calculated from the hyper-
bolic excess speed v−∞ and v+

∞ in the preliminary design, and the relationship between them
satisfies Equations (20)–(24). The normal unit vector of the hyperbolic orbital plane is:

nt =
v−∞ × v+

∞

‖v−∞ × v+
∞‖

(27)

The energy of the hyperbolic orbit, E, satisfies [42]:

E =
1
2

∥∥v−∞
∥∥2 − µM∥∥r−∞

∥∥ = −µM
2at

(28)

where r−∞ denotes the position vector with respect to the Moon when entering the lunar
SOI, and at denotes the semi-major axis of the hyperbolic orbit. In fact, µE

‖r−∞‖ is close

to 0. Therefore, the semi-major axis at of the hyperbolic orbit is approximated by the
following equation:

at = −
µM∥∥v−∞
∥∥2 (29)

The magnitude of the vector Bt is equal to the magnitude of the semi-imaginary axis
of the hyperbolic orbit, bt:

‖Bt‖ = |bt| = |at| cot
(

δ

2

)
(30)

where δ is calculated by Equation (21). The target vector Bt is expressed as:

Bt = ‖Bt‖S× nt (31)

Then, the unit vectors of the B-plane coordinate system S, R, and T are calculated by
Equation (25). The target B-plane parameters BTt and BRt are calculated by replacing B
with Bt in Equation (26).

The actual B-plane parameters are calculated according to the position vector ra
and velocity vector va with respect to the Moon when entering the lunar SOI in the real
dynamical model. The unit normal vector na of the actual orbital plane and eccentricity
vector ea are given by [42]:

na =
ra × va

‖ra × va‖
, ea =

1
µM

[(
‖va‖2 − µM

‖ra‖

)
ra − (ra · va)va

]
(32)
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Then, the vector S is given by:

S = cos β
ea

‖ea‖
+ sin β

na × ea

‖na × ea‖
(33)

where β = cos−1(1/‖ea‖). The semi-major axis aa is given by:

aa =
µM‖ra‖

2µM − ‖va‖2‖ra‖
(34)

The magnitude of the actual vector, Ba, is equal to the magnitude of the semi-imaginary
axis of the hyperbolic orbit, ba:

‖Ba‖ = |ba| = |aa|
√
‖ea‖2 − 1 (35)

The actual vector Ba is expressed as:

Ba = ‖Ba‖S× na (36)

The unit vectors of the B-plane coordinate system, R and T, are calculated by Equation (25),
while S is calculated by Equation (33). Then, the actual B-plane parameters, BTa and BRa, are
calculated by replacing B with Ba in Equation (26).

The B-plane parameters BT and BR have been successfully applied to the design of
lunar swingby trajectories [43]. The responses of BT and BR to the initial conditions are
approximately linear, and the changes of BT and BR with respect to the initial conditions
(the partial derivatives) are of the same order of magnitude. In this work, two components
of the departure velocity vector, denoted by v1 and v2, at the initial time moment ts are
chosen as design variables, and the target B-plane parameters are constrained to complete
the swingby correction, i.e., to find the solution of the following equation:

f (v1, v2) =

[
BTa − BTt
BRa − BRt

]
=

[
0
0

]
(37)

3.2. Adaptive Model Continuation Technique

The solution of the transfer design in complex dynamical models is obtained based
on the solution in simplified dynamical models. This process is called model continuation.
This work involves the model continuation that iterates multiple optimal solutions from
the two-body models to the simplified high-fidelity models.

The solutions in the two-body models provide the initial values of local optimization
in the simplified high-fidelity models. However, the differences between the two kinds of
models are significant. If the local optimization is directly performed in the complex models,
it will suffer from the problem of difficult convergence. Even if the convergence result is
occasionally obtained, it will deviate from the initial optimal point. Therefore, an adaptive
model continuation technique is proposed to overcome these difficulties. The perturbation
accelerations are sequenced according to their order of magnitude from largest to smallest
and gradually added to the dynamical models. When the ith perturbation should be added,
the dynamic equation of the S/C is:

r̈ = aC(r) +
i−1

∑
j=1

aj(r, ṙ, t) + εiai(r, ṙ, t) (38)

where aC denotes the acceleration caused by the central body, aj and ai the perturbation
accelerations, and εi the model continuation parameter, which gradually increases from 0
to 1. The convergent result is considered as the initial value for the next optimization with
the increase of εi.
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Theoretically, the solution in the complex models can be obtained based on the solution
in the simplified models by model continuation if the parameter εi increases slowly enough.
However, a too small step size that increases the continuation parameter brings redundancy
in computational times. Meanwhile, the appropriate step size depends on the strength of
the perturbation. Even for the same perturbation, the appropriate step size may change
with the continuation parameter. It will show by the numerical simulation of model
continuation that when increasing εi with constant step size, convergence difficulty occurs
sometimes. If the problem is solved by further reducing the constant step size, it may cause
a waste of computational resources. Therefore, the model continuation technique with an
adaptive step size variation is proposed, and the pseudocode is shown in Algorithm 1.

Algorithm 1: Adaptive Model Continuation Technique
Input: Result in the two-body model x2-body, initial step size d0, decline rate α,

growth rate β, convergence judgment parameter c, and calculation times κ
for each perturbation.

Output: Final result x and objective function J after the model continuation.
1 In the orders of magnitude from largest to smallest of perturbations, the following

inequality is obtained: O(a1) ≥ · · · ≥ O(ai) > · · · ≥ O(am), where O(a)
represents the order of magnitude of a. The dynamical equation is:
r̈ = aC(r) + ∑m

i=1 εiai(r, ṙ, t), εi = 0, ∀i. Set the result in the two-body model as
the initial value: xi0 ← x2-body. Calculate the initial objective function:
Ji0 = f (xi0). The process of calculating f involves numerical integrations and
requires the use of the above dynamic equation.

2 for i← 1 to m by 1 do
3 εi ← 0.0, εi0 ← 0.0, d← d0, κ ← 0;
4 while εi0 < 1.0 do
5 εi ← min(εi0 + d, 1.0);
6 Solve the optimization problem with xi0 as the initial value: min J = f (X);
7 The variables and objective function at the end of optimization are denoted

by x and J, respectively;
8 κ ← κ + 1;
9 if J − Ji0 < cJi0 then

10 if κ < 2 then
11 d← βd;
12 end
13 εi0 ← εi, xi0 ← x, Ji0 ← J, κ ← 0;
14 else
15 d← αd;
16 end
17 end
18 end
19 x← xi0, J ← Ji0.

The idea of the adaptive model continuation technique is as follows. The continuation
parameter εi is increased by step size d. For the ith perturbation, the parameters are
first given: the initial step size d0, decline rate α, growth rate β, convergence judgment
parameter c, and calculation times κ. The optimization problem with a series of εi is
solved in turn, where εi = min(εi0 + d, 1.0), and εi0 is equal to the value of εi in the last
convergence of the optimization. The optimization result corresponding to εi0 is adopted
as the initial value for the current optimization, denoted by x0. After one step of local
optimization, judge whether it converges according to the relative error between the old
and new indexes. This optimization is considered converged if the relative error is less than
the given parameter c. If it converges, εi0, x0, and J are updated. Whether to increase the
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step size d is judged according to the value κ, which records the times of local optimization
from the last convergence to this convergence. If the current local optimization does not
converge, the step size d is reduced, and εi is calculated again. Then, the optimization
problem is solved as before.

3.3. Summary of Design Process

A summary of the design process is presented in a flow chart, as shown in Figure 5.
The initial and target orbital parameters are determined based on the existing studies on
heliocentric formation. The optimization variables are classified into four classes: time
moments, impulses, swingby parameters, and other orbital parameters. The entire design
approach consists of three steps.

Step 1: Accomplish the preliminary design with 

lunar swingby in the two-body dynamical model and 

obtain multiple optimal solutions. The simplified 

high-fidelity dynamical models are defined based on 

the order of magnitude of the perturbation 

accelerations.

Step 3: Based on all the above variables, local 

optimization is performed to obtain the high-fidelity 

solution of low-energy orbital transfer. Based on the 

final results, the terminal states and the calculation 

time of the orbits obtained under different dynamical 

models are compared. In this way, it will be verified 

that the simplification of the dynamical models in 

Step 1 is reasonable and effective.

Step 2: Adopt the adaptive model continuation 

technique to obtain multiple optimal solutions in the 

simplified high-fidelity dynamical models quickly 

(Inside the lunar SOI, the lunar gravitation is 

specially treated.). The optimal solution is selected. 

Then the orbits inside the Earth’s SOI are corrected.

Provide 

optimization 

initial values

Verify 

Simplified 

models

Initialization

initial orbital parameters

heliocentric formation parameters

Optimization variables

moments

impulses

swingby parameters 

other orbital parameters

Figure 5. Flow chart of general approach.

Step 1: Preliminary design of the transfer orbit in the two-body models. To improve
the probability of finding the global optimal solution, the optimization problem is solved
in the two-body models first. In these models, the computational efficiency can be greatly
improved by using analytic orbital theory and the well-established method of solving
the Lambert’s problem [44]. The swingby is equated to an instantaneous impulse and is
characterized by two design parameters. The design with the minimum number of impulses
is considered first, and then the number of impulses is increased and examined whether the
results are better with limited computational resources and acceptable computational times.
The solutions are saved for Step 2, and the simplified high-fidelity models are defined
based on the order of magnitude of the perturbation accelerations.

The patched-conic approximation is generally applied in the preliminary design for
complex trajectory optimization problems. In the patched-conic model, the dynamic
environment in this work is assumed to consist of three independent gravitational fields
associated with the Earth, Moon, and Sun, respectively, and separated by the Earth’s
SOI and the lunar SOI. The orbit of the S/C in a certain SOI is a conic curve without
perturbations. When the spacecraft arrives at the SOI, it is necessary to perform the
translations expressed by Equation (5) to ensure that the orbit is continuous across the SOI.
In the two-body models, if the states of the S/C at the time moment t1 and time moment t2
are given, the velocity increment of the transfer between the two states can be obtained by
solving the Lambert’s problem.

The minimum number of impulses is first applied to achieve lunar swingby and then
to rendezvous with the center of the constellation, and an optimization problem with eight
variables needs to be solved. Let us denote the start time of the design mission by to,
the start time of the transfer by ts, the time moment of the lunar swingby by tm, and the
end time of the transfer by t f . Suppose the S/C leaves the Earth’s SOI at the time moment
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tl . The eight optimization variables are as follows: the duration from to to ts, denoted by
∆tos, the duration from ts to tm, denoted by ∆tsm, the duration from tm to t f , denoted by
∆tm f , the lunar swingby altitude and angle, denoted by hp and ψ, respectively, the RAAN
of the initial GTO, denoted by Ω, and its true anomaly at the time moment ts, denoted by f ,
and the scale from 0 to 1 characterizing the time moment of the orbital correction maneuver
between tl and t f , denoted by η. The time moment of the orbital correction maneuver
denoted by tc is expressed by:

tc = tl + η
(

t f − tl

)
(39)

The impulses are applied at ts, tc, and t f , and their magnitude are denoted by ∆vs, ∆vc,
and ∆v f , respectively. They are obtained by solving the Lambert’s problem with different
revolutions and selecting the solution with the smallest velocity increment. The objective
function to be minimized is:

min J = ∆vs + ∆vc + ∆v f (40)

In addition to the initial and final states, the constraints include: (1) The spacecraft
should fly by the Moon at the time moment tm; (2) The total transfer duration should be
less than the time limit Tmax. The transfer process of the S/C is shown in Figure 6. The blue
part is the geocentric orbits, and the red is the heliocentric orbits. The translations from
the J2000 ECI frame to the HERF are completed at the boundary of the Earth’s SOI at the
time moment tl , which are expressed by Equation (5). The equations of motion of the S/C
changes from Equation (9) to Equation (17) without perturbations. The orbits with the
time intervals from ts to tm and tc to t f are obtained by solving the Lambert’s problem,
and the remaining orbits are obtained by calculating the equations of motion under the
two-body models.

ot st mt ft

lt

sv swingbyv

ct

cv fv

Figure 6. Minimum impulse number transfer model.

Based on the above calculations, the multi-impulse transfer model will be attempted
next, as shown in Figure 7. The number of impulses applied from ts to tm is p(p > 1),
and the number of impulses applied from tm to t f is q(q > 2). Compared with the minimum

impulse number transfer model, some optimization variables are added including: ∆v{0}a ,
· · · , ∆v{p−2}

a , t{1}a , · · · , t{p−1}
a , ∆v{1}b , · · · , ∆v{q−2}

b , t{1}b , · · · , and t{q−2}
b . The transfer orbits

from t{p−1}
a to tm and from t{q−1}

b to t f are obtained by solving the Lambert’s problem.
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Figure 7. Multi-impulse transfer model.

The subsequent numerical experiments will illustrate that the transfer with a total of
three maneuvers, as shown in Figure 6, is sufficient in this study. The optimizations are
repeated nopt times in Step 1 to obtain nopt optimal solutions.
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For the high-fidelity models, some of the perturbations are too small to have a dis-
cernible effect on the orbit. While the other perturbations must be considered; otherwise,
they may lead to significant errors. Therefore, to improve the computational efficiency
and keep a small terminal error, it is necessary to retain the perturbations that significantly
impact the orbit and ignore those with less impact. Based on the segments of transfer orbit
designed in the two-body models, the positions and velocities at multiple discrete time
moments on the transfer orbit are obtained. The perturbation accelerations counted into the
high-fidelity models of the geocentric and heliocentric orbits are calculated. After normal-
izing the perturbation accelerations by the central celestial body gravitation acceleration,
the simplified high-fidelity models are drawn according to the orders of magnitude and
their influences on the terminal states. The final low-energy transfer orbit is refined in these
simplified high-fidelity models.

Step 2: Model continuation and swingby correction. This step utilizes the results of
Step 1. The nopt optimal solutions are iterated from the two-body models to the simplified
high-fidelity models by the adaptive model continuation technique. The swingby process
is specially treated and corrected to obtain approximate orbits in the lunar SOI. Then,
the optimal solution among them is picked out. The space size of the lunar SOI and the
simplified high-fidelity model of the selenocentric orbits are considered. We maintain the
heliocentric orbit unchanged and correct the geocentric orbit. The departure velocity from
the GTO is adjusted to shoot the target B-plane parameters. After leaving the lunar SOI,
an impulse is added to satisfy the following position constraint at the Earth’s SOI. Finally,
another impulse is added at the Earth’s SOI to meet the velocity constraint. In this way,
the correction of the geocentric orbit is completed. The details are as follows.

Substep 1: The nopt optimal solutions are iterated from the two-body models to the
approximate simplified high-fidelity models by the adaptive model continuation technique.
The lunar gravitation perturbation for the geocentric orbits is still not considered. The lunar
swingby is treated as an instantaneous impulse. Each step of the model continuation,
corresponding to a change in the model continuation parameter εi, solves an optimization
problem using a local optimization algorithm. This optimization problem has fourteen
variables (include the components of vector variables) as follows: the duration from to
to ts, denoted by ∆tos, the duration from ts to tm, denoted by ∆tsm, the duration from
tm to t f , denoted by ∆tm f , the lunar swingby altitude and angle, denoted by hp and ψ,
respectively, the RAAN of the initial GTO, denoted by Ω, its true anomaly at the time
moment ts, denoted by f , the scale from 0 to 1 characterizing the time moment of the orbital
correction maneuver between tl and t f , denoted by η, three components of the impulse
∆vs at the time moment ts, and three components of the impulse ∆vc at the time moment
tc. In the optimization problem, the constraints to be satisfied and the objective function
are the same as in the preliminary design. However, since the solution of the two-point
boundary-value problem considering the perturbations cannot be obtained by directly
solving the Lambert’s problem, the residuals of the position constraints at tm and t f are
added to the objective function as penalty terms. The order of model continuation that
adds the perturbations in turn into the dynamical models is the J2 perturbation of the Earth,
atmospheric drag, solar gravitation, and solar radiation for the geocentric orbits, and the
gravitation of the Earth–Moon system, Jupiter, Venus, and Mercury, and the solar radiation
for the heliocentric orbits.

Substep 2: The space size of the lunar SOI is considered, and the lunar gravitation is
gradually added to the dynamical model for the geocentric orbits by gradually increasing
the continuation parameter. There is a special treatment inside the lunar SOI [45]. When the
S/C flies inside the lunar SOI, the lunar gravitation is set to 0. The S/C flies by the Moon at
the time moment tm under the influence of the Earth’s gravitation and other perturbations.
At this time moment, the lunar swingby is still equivalent to an instantaneous impulse.
Note that the design result of Substep 1 is regarded as the initial value of the optimization
problem corresponding to Substep 2. The difference between Substep 1 and Substep 2 is
only in the dynamical models. The variables, constraints, and objective function in this
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optimization problem are the same as described in the immediately preceding paragraph.
A schematic diagram of Substeps 1 and 2 is shown in Figure 8, where t, r, and v denote
the time moments, position vectors, and velocity vectors, respectively, and the subscripts
s, m, l, c, and f represent the time moments of the departure from the GTO, the flyby of
the Moon, the departure from the Earth’s SOI, the orbital correction, and the arrival at the
target position, respectively. The superscripts {1} and {2} are used in subfigures (a) and (b)
to distinguish the results of Substeps 1 and 2, respectively.
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Figure 8. Schematic diagram of Substeps 1 and 2 of model continuation and swingby correction.
(a) Substep 1. (b) Substep 2.

Substep 3: The optimal solution among nopt solutions in Substep 2 is picked out to
complete the subsequent design. We maintain the heliocentric orbit unchanged and correct
the geocentric orbit. This means that the time moment of arrival at the Earth’s SOI and
the corresponding position and velocity remain the same as the design result of Substep 2.
In the above substeps, the lunar swingby effect is equivalent to an instantaneous impulse,
and the orbit inside the lunar SOI is approximate. Therefore the departure velocity from
the GTO needs to be corrected to achieve the desired lunar swingby effect. The B-plane
parameters BT and BR are used to correct the impulse at the departure time moment ts
as mentioned in Section 3.1. This requires shooting the nonlinear Equation (37). After
the correction, the S/C still cannot reach the position of the Earth’s SOI designed in the
previous step at the time moment tl . The time moment of leaving the lunar SOI is denoted
by tm2. A correction impulse is added in the orbit during the time moment tm2 to the
time moment tl . Another impulse is added at the time moment tl to meet the velocity
requirement. The two impulses are denoted by ∆va and ∆vb, and the corresponding time
moments are denoted by ta and tb, where tb = tl . The schematic diagram of Substep 3
is shown in Figure 9, where the subscript a represents the time moment of the orbital
correction between tm2 and tl , and the rest symbols have the same meaning as in Figure 8.
The superscripts {3} and {4} are used in subfigures (a) and (b) to distinguish the results after
shooting the B-plane parameters and adding two correction impulses in Substep 3. Note
that when the superscripts of the symbols in Figures 8 and 9 are the same, their values are
the same.
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Figure 9. Schematic diagram of Substep 3 of model continuation and swingby correction. (a) Shoot
the B-plane parameters. (b) Add two correction impulses.
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Step 3: Local optimization and validation of the simplified dynamical models. A
local optimization problem should be solved. It has twenty optimization variables, twelve
from Substep 1 of Step 2 (except for the swingby parameters rp and ψ) and eight from the
swingby correction (ta, tb, and six components of ∆va and ∆vb in total). The ranges of the
optimization variables are kept unchanged. The objective function to be minimized is:

min J = ∆vs + ∆vc + ∆va + ∆vb + ∆v f (41)

where ∆va and ∆vb are the magnitude of ∆va and ∆vb, respectively, and the rest of the
symbols have the same physical meaning as in Equation (40). The states at the initial and
final time moments need to be satisfied, and the total transfer duration should be less than
the time limit Tmax. Then, the simplified high-fidelity solution of low-energy orbital transfer
is obtained by local optimization. As mentioned in Section 2, for the geocentric orbits,
in addition to the central gravitation of the Earth, the orbit of the spacecraft is affected
by the perturbations due to the Earth’s nonspherical gravitation, atmospheric drag, solar
gravitation, lunar gravitation, solar radiation, relativistic effects, solid tides, ocean tides,
Earth’s rotational deformation, etc. For the heliocentric orbits, in addition to the solar gravi-
tation, the orbit of the spacecraft is affected by the perturbations due to the gravitation of
Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, Pluto, the Moon, the solar
radiation, etc. In the simplified high-fidelity models, the perturbations due to the Earth’s
nonspherical gravitation, atmospheric drag, lunar gravitation, solar gravitation, and solar
radiation are considered for the geocentric orbits, and the perturbations due to the gravita-
tion of the Earth–Moon system, Jupiter, Venus, and Mercury, and the solar radiation are
considered for the heliocentric orbits. Based on the design results in Step 2, we can calculate
the terminal position and velocity relative errors obtained by integrating the equations
of motion in the high-fidelity dynamical models and simplified high-fidelity models and
record the computational times spent on propagating a single orbit. We will further verify
that simplifying the dynamical models is reasonable and effective. The relative errors of
terminal position and velocity and the ratio of computational times between the model j
and the model i are defined as:

er =

∥∥rj − ri
∥∥

‖ri‖
, ev =

∥∥vj − vi
∥∥

‖vi‖
, ct =

tcostj

tcosti
(42)

where rj, vj, and tcostj denote the terminal position and velocity and computational times of
propagating a single orbit under the model j, respectively, and ri, vi, and tcosti denote those
under the model i, respectively. Smaller er and ev means that the two models are close to
each other, and smaller ct means that it takes a shorter time to propagate the orbit under
the model j.

4. Results and Discussion

1 January 2030, is chosen as the start time of the designed mission, which is denoted
by to as stated before. The duration of the transfer is limited to 540 days. The start orbit of
the transfer is set to the GTO launched by the Ariane 5 [32], and the orbital parameters are
shown in Table 4. The right ascension of ascending node and the true anomaly at the initial
time moment of the transfer are considered as optimization variables. The planetary and
lunar ephemerides are obtained from the DE430 ephemeris of JPL [34].

Table 4. Orbital parameters of the GTO.

Orbital Parameters Value Unit

Inclination 6 degree
Altitude of perigee 250 km
Altitude of apogee 35,943 km

Argument of perigee 178 degree
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The example of LISA is simulated to demonstrate the presented design approach.
The specific implementation details, results, and analysis of the three parts of the design
approach are described in turn.

4.1. Preliminary Design in Two-Body Dynamical Models

First, a global optimization algorithm is utilized to find the global optimal solution
as well as possible in the two-body models. The minimum number of impulses is first
investigated, and the ranges of the eight variables are shown in Table 5.

Table 5. Ranges of optimization variables.

Variables Lower Bound Upper Bound Unit

∆tos 0.0 12.0 month
∆tsm 0.0 6.0 month
∆tm f 0.0 16.0 month

hp 200 1000 km
ψ 0.0 2π rad
Ω 0.0 2π rad
f 0.0 2π rad
η 0.0 1.0 /

The particle swarm optimization (PSO) algorithm [46] is adopted to solve the op-
timization problem of preliminary design, which is a stochastic search algorithm based
on population collaboration developed by simulating the foraging behavior of a flock of
birds. Each particle is regarded as a search individual in the N-dimensional space, and the
current position of the particle is a candidate solution to the corresponding optimization
problem. The velocity of the particle is dynamically adjusted according to the historical
optimal position of the particle and the historical optimal position of the swarm. The PSO
algorithm balances the global and local search through parameters. It does not need to
calculate the gradient and is widely used in trajectory optimization problems because of its
fast convergence speed and strong versatility. The parameter setting of the PSO algorithm
in this work is referred to Jiang et al. [47]. As the number of iterations increases, the inertia
factor ω decreases linearly from 0.9 to 0.4, and the self-confidence c1 and swarm confidence
c2 decreases linearly from 2.5 to 0.5, respectively. The maximal velocity Vmax is 0.8.

To speed up the computational efficiency, we adopt a multi-core parallel technique
and use a technique of discrete storage and linear interpolation for the Earth and the Moon
ephemerides. The positions and velocities of the Earth and the Moon are obtained from the
JPL’s DE430 [34], with the Earth ephemerides stored with step size 0.01 day and the Moon
ephemerides stored with step size 0.005 day. All variables are normalized to [0, 1] according
to their upper and lower bounds when using the PSO algorithm. In this work, the swarm
size is set to 5000, the maximal iteration number is set to 5000, and the optimization is
repeated 100×. All the tests are run on an Intel Core i9-12900K Processor with 16 cores and
24 threads at 3.0 GHz. The program is run on the C++ platform.

The optimization program is run 100 times independently according to the parameter
setting of the PSO algorithm above, and the consequent 100 optimal solutions are recorded.
They are shown in Figure 10, which depicts the values of optimization variables and the
total velocity increments as the objective function J. We use a boxplot to measure the
dispersion of J. Among the 100 independent solutions, the values of ∆tm f , Ω, and f are
more concentrated. After denormalization, the average value of ∆tm f is 321.3093 days, Ω is
concentrated around 6.0665 rad and 2.9515 rad, and f is concentrated around 0.0038 rad.
The values of the other variables are distributed in [0, 1] without obvious aggregation. As
for the velocity increments of the 100 solutions, the maximum is 1.2880 km/s, the minimum
is 1.1619 km/s, the mean is 1.2092 km/s, and the standard deviation is 0.0276 km/s. All
optimization variables of the best solution are shown in Tables 6 and 7, where ∆vswingby is
the velocity increment due to the lunar swingby. The total transfer duration is 360.7176 days
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and the total velocity increment to be provided by the engine is 1.1619 km/s. The geocentric
and heliocentric trajectories are shown in Figures 11 and 12.
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Figure 10. One hundred optimal results in the two-body dynamical models.

Table 6. Values of optimization variables in the two-body dynamical models.

Results Value Unit

∆tos 57.0635 day
∆tsm 5.5817 day
∆tm f 355.1359 day

hp 655.9315 km
ψ 1.9007 rad
Ω 6.0780 rad
f 6.2648 rad
η 0.4100 /

Table 7. Magnitudes of maneuver and swingby impulses in the two-body dynamical models.

Results Value Unit

∆vs 0.6783 km/s
∆vc 0.0036 km/s
∆v f 0.4799 km/s

∆vswingby 1.2527 km/s

Figure 11. Geocentric trajectories in preliminary design.
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Figure 12. Heliocentric trajectories in preliminary design.

Then, the multi-impulse transfer model is investigated. An optimization problem is
constructed for the multi-impulse model with the optimization variables, objective function,
and constraints as described in Section 3.3. The following two approaches are tried: (1) Di-
rectly search for the optimal solution of the optimization problem with the multi-impulse
transfer model using the global optimization algorithm, i.e., the PSO algorithm. (2) locally
optimize the problem using the local optimization algorithm library NLopt [48]. The so-
lution corresponding to the minimum impulse number model is regarded as the initial
value for solving this optimization problem. NLopt is a general library of optimization
algorithms for nonlinear optimization, containing a variety of global and local optimiza-
tion algorithms that can solve unconstrained and constrained optimization problems and
handle nonlinear and inequality constraints. According to the calculation, the total velocity
increment corresponding to the multi-impulse model is not significantly better than that
corresponding to the minimum impulse number transfer model. Therefore, we finally
adopted the transfer design with three maneuvers in the preliminary design.

The perturbation accelerations counted into the high-fidelity models are calculated
based on the states on the transfer orbit obtained under the two-body models. The parame-
ters of the high-fidelity models are as follows. For the geocentric orbits, the EGM96 [49] is
used to model the nonspherical gravitation perturbation, and the highest order of the spher-
ical harmonic coefficients is set to 20. For the atmospheric drag, the drag coefficient is set to
2.2, and the area-mass ratio of the S/C is set to 0.01. The atmospheric density at a certain
point is calculated by linear interpolation with the 1976 standard atmosphere model [50].
For the solar and lunar gravitation perturbations, the accelerations are calculated according
to the third-body gravitation model. For the solar radiation acceleration, the solar radiation
coefficient is 1.5, the speed of light is 2.99792458× 108 m/s, and the luminosity of the Sun
is 3.823× 1026 W. A cylindrical ground shadow model is used, which regards sunlight as
parallel light. In addition to the above perturbations, relativistic effects, solid tides, ocean
tides, and the Earth’s rotational deformation are also considered. As for the relativistic
effects, only the first-order post-Newtonian effect is considered, which is the largest one.
For the heliocentric orbits, the perturbation accelerations of the gravitation of the Mercury,
Venus, Earth, Moon, Mars, Jupiter, Saturn, Uranus, Neptune, and Pluto, and the solar
radiation are considered. The ranges of the order of magnitude of the above perturbation
accelerations along the 1st, 3rd, and 4th orbit segments in Figure 2 are estimated (normal-
ized by the central gravitation of the Earth), as shown in Tables 8 and 9. According to the
orders of magnitude of the perturbation accelerations and the error in the terminal state of
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the transfer orbit calculated under different dynamical models, the perturbations of the
Earth’s nonspherical gravitation, atmospheric drag, lunar gravitation, solar gravitation,
and solar radiation are considered for the geocentric orbits; meanwhile, the perturbations
of the gravitation of the Earth–Moon system, Jupiter, Venus, and Mercury, and the solar
radiation are considered for the heliocentric orbits. When we design the transfer orbit,
the dynamical model of the selenocentric orbits is required only in the last step, at which
the lunar swingby is corrected. Moreover, the flight time of the S/C in the lunar SOI is
relatively short. Therefore, considering that the perturbation accelerations of the Earth’s
nonspherical gravitation and atmospheric drag as far as the Moon are too weak to consider,
only the gravitation of the Moon, Earth, and Sun, and the solar radiation are adopted into
the equations of motion on the selenocentric orbits.

Table 8. Orders of magnitude of the perturbation accelerations for the geocentric orbits.

Accelerations (Normalized) 1st 3rd

Lunar gravitation 1 10−7∼100 10−5∼100

Nonspherical gravitation 10−9∼10−2 10−12∼10−9

Atmospheric drag 0 ∼ 10−5 0
Solar gravitation 2 10−7∼10−5 10−5∼100

Solar radiation 10−8 10−8

Relativistic effects 10−13∼10−8 10−15∼10−13

Solid tides 10−14∼10−7 10−17∼10−13

Ocean tides 10−15∼10−8 10−18∼10−15

Rotation deformation 10−18∼10−9 10−20∼10−15

1 At the lunar SOI, the lunar gravitation acceleration is of the same order of magnitude as the Earth’s gravitation
acceleration. 2 At the Earth’s SOI, the solar gravitation acceleration is of the same order of magnitude as the
Earth’s gravitation acceleration.

Table 9. Orders of magnitude of the perturbation accelerations for the heliocentric orbits.

Accelerations (Normalized) 4th

Earth gravitation 1 10−7∼100

Lunar gravitation 10−9∼10−2

Jupiter gravitation 10−8∼10−7

Solar radiation 10−8

Venus gravitation 10−8

Mercury gravitation 10−9∼10−8

Saturn gravitation 10−9

Mars gravitation 10−10

Uranus gravitation 10−11

Neptune gravitation 10−11

Pluto gravitation 10−16∼10−15

1 At the Earth’s SOI, the solar gravitation acceleration is of the same order of magnitude as the Earth’s gravita-
tion acceleration.

The simplified models are effective in balancing the computational accuracy and
computational efficiency. To support this simplification, we will verify the accuracy and
efficiency in Section 4.3.

4.2. Adaptive Model Continuation and Swingby Correction

As described in Section 3.3, three substeps are required to complete the model con-
tinuation and swingby correction. In Substep 1, nopt optimal solutions are iterated from
the two-body models to the approximate simplified high-fidelity models by the adaptive
model continuation technique, where for the geocentric orbits, only the lunar gravitation
perturbation is not considered. The lunar swingby is treated as an instantaneous impulse.
This substep entails solving a series of optimization problems based on the adaptive model
continuation technique. As mentioned before, this series of optimization problems has
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fourteen optimization variables, six of which are impulse components that have values
between −1 km/s and 1 km/s. The ranges of the other optimization variables are shown
in Table 5. The values of the optimization variables obtained in Section 4.1 and the values
of the impulses obtained by solving the corresponding Lambert’s problem constitute the
initial values for this substep. The order of model continuation that adds the perturbations
in turn into the dynamical models is the J2 perturbation of the Earth, atmospheric drag,
solar gravitation, and solar radiation for the geocentric orbits, and the gravitation of the
Earth–Moon system, Jupiter, Venus, and Mercury, and the solar radiation for the heliocen-
tric orbits. In our simulation, for each perturbation, the initial step size is 0.1, the decline
rate is 0.5, and the growth rates are 1.5 and 2.0 for the geocentric and heliocentric orbits,
respectively. The maximum step size does not exceed 0.2, and the convergence judgment
parameter is 0.01.

In Substep 2, add the lunar gravitation perturbation when propagating the geocentric
orbits outside the lunar SOI. Inside the lunar SOI, the lunar gravitation is not considered,
and the lunar swingby effect is still equivalent to an instantaneous impulse. In this substep,
the lunar gravitation is gradually added to the dynamical models by the adaptive model
continuation technique, corresponding to solving a series of optimization problems. In the
series of optimization problems, the optimization variables along with their ranges and the
expressions of the objective functions and constraints are the same as in Substep 1, and their
initial values are adopted from the solutions of Substep 1. In this simulation, the initial
step size is 0.2, the decline rate is 0.5, the growth rate is 2.0, the maximum step size is 0.2,
and the convergence judgment parameter is 0.01.

The best of the nopt solutions obtained after Substep 1 and Substep 2 is picked out for
the subsequent corrections. The results of Substep 1 and Substep 2 are shown in Figure 13,
where each subplot represents a model continuation process of one perturbation, where
εi, i = 1, · · · , 10 represent, for the geocentric orbits, the J2 perturbation, atmospheric drag,
solar gravitation, and solar radiation, for the heliocentric orbits, the gravitation of the
Earth–Moon system, Jupiter, Venus, and Mercury, and the solar radiation, and for the
geocentric orbits, the lunar gravitation, respectively. The points of each subplot indicate
the convergent solutions, the horizontal coordinate indicates the value of εi at conver-
gence, which is calculated by the adaptive model continuation technique, and the vertical
coordinate indicates the corresponding velocity increment. The parameter values also
affect the final result. Too large a step size may produce poor optimization results due
to underutilization of the perturbation, which is essentially caused by jumping out of
the current local optimal solution. The change in velocity increment after increasing the
corresponding model continuation parameter from 0 to 1 for each perturbation is collated
in Table 10, where + indicates an increase in velocity increment and − indicates a decrease.
The most significant effect on the transfer velocity increment is due to the gravitation of the
Earth–Moon system for the heliocentric orbits, and the velocity increment decreases from
1.1935 km/s to 0.8087 km/s after adding it. Except for this, the solar and lunar gravitation
for the geocentric orbits has large effects on the change of velocity increment. The other
perturbations cause changes in velocity increment below 0.01 km/s. The gravitation of the
Earth–Moon system, Jupiter, and Moon, and the solar radiation help reduce the velocity
increment required for the transfer. It is inferred that it is necessary to consider the sim-
plified high-fidelity models in the transfer design. It is worth noting that the change of
velocity increment after considering the lunar gravitation for the geocentric orbits is small.
Combined with the subsequent correction results, it is shown that equating the swingby
effect with an instantaneous impulse in the preliminary design is reasonable and accurate,
which may provide a good initial value for the subsequent design.
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Figure 13. Model continuation process for each perturbation.

Table 10. Changes of velocity increment in model continuation.

Perturbation Increase or Decrease Value (km/s)

In geocentric orbits

J2 perturbation + 3.1157× 10−3

Atmospheric drag + 2.7970× 10−5

Solar gravitation + 2.9845× 10−2

Solar radiation − 1.3405× 10−3

In heliocentric orbits

Earth-Moon system
gravitation − 3.8481× 10−1

Jupiter gravitation − 3.8132× 10−5

Venus gravitation + 3.8555× 10−4

Mercury gravitation + 3.4022× 10−4

Solar radiation − 3.0718× 10−4

In geocentric orbits Lunar gravitation − 3.3302× 10−2

The values of all optimization variables and the magnitudes of the impulses of the
best solution are shown in Tables 11 and 12, where ∆vswingby is the velocity increment due
to the lunar swingby. The total transfer duration is 360.8871 days and the total velocity
increment to be provided by the engine is 0.7758 km/s. Comparing the values of the
velocity increments in Tables 7 and 12, the main change is in ∆v f , indicating that the
addition of the perturbations reduces the magnitude of the propulsive impulse at the
terminal time moment.

Table 11. Values of optimization variables after Substep 1 and Substep 2.

Results Value Unit

∆tos 57.0529 day
∆tsm 5.4528 day
∆tm f 355.4343 day

hp 232.6900 km
ψ 1.7544 rad
Ω 6.0668 rad
f 6.2792 rad
η 0.4809 /

vsx −0.1301 km/s
vsy −0.6661 km/s
vsz −0.0698 km/s
vcx 0.0323 km/s
vcy 0.0352 km/s
vcz 0.0275 km/s
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Table 12. Magnitudes of maneuver and swingby impulses after Substep 1 and Substep 2.

Results Value Unit

∆vs 0.6822 km/s
∆vc 0.0551 km/s
∆v f 0.0385 km/s

∆vswingby 1.3677 km/s

Then, the orbit inside the Earth’s SOI is corrected by Substep 3. The solution of
Substep 2 includes the position and velocity corresponding to the departure time moment
ts of the spacecraft, the position and velocity corresponding to the time moment tl of
leaving the Earth’s SOI, and the swingby parameters rp and ψ. The position and velocity
corresponding to the time moment tl should be the same as the corresponding values in
Substep2. The target B-plane parameters BTt and BRt are calculated using the the swingby
parameters rp and ψ. Maintaining the departure time moment and the corresponding
position unchanged, the actual B-plane parameters BTa and BRa of the spacecraft when
it reaches the lunar SOI are made as close to the target B-plane parameters by adjusting
the two components of the corresponding velocity as possible. This requires solving the
system of binary nonlinear equations, as described in Equation (37). The corresponding
system of equations with [∆vsx, ∆vsy], [∆vsx, ∆vsz], and [∆vsy, ∆vsz] as three sets of variables
are solved, respectively. Combining the results of the two correction impulses in subse-
quent calculations, the solution with the smallest increase in velocity increment is chosen.
MinPack-1 [51], a package of FORTRAN subprograms for solving nonlinear equations and
nonlinear least squares problems, is used to solve Equation (37). It is a widely used and
relatively well-developed package in which the section on solving nonlinear equations
has been translated into C++ programming language in our simulations. In the problem
of shooting the B-plane parameters, the relationships between BT and BR and the initial
velocity are nearly linear, and the solving of nonlinear equations converges after a few
iterations. Then, the velocity at the time moment of departure is updated according to
the solution of the nonlinear equations, and the time moment, position, and velocity of
the spacecraft when it leaves the lunar SOI are obtained. The addition of an impulse at a
suitable time moment after leaving the lunar SOI enables the spacecraft to meet the position
at the time moment tl designed in Substep 2. This impulse is denoted by ∆va. An impulse
is applied at the time moment tl to meet the velocity at the time moment tl designed in
Substep 2. This impulse is denoted by ∆vb.

The results corresponding to the three sets of optimization variables [∆vsx, ∆vsy],
[∆vsx, ∆vsz], and [∆vsy, ∆vsz] are listed in Table 13, where [BTt, BRt] and [BTa, BRa] denote
the target and actual B-plane parameters after shooting, respectively, ∆vs,0 denotes the mag-
nitude of the impulse at departure in Substep 2, ∆vs, ∆va, and ∆vb denote the magnitudes
of the impulses at the departure time moment, at the first correction time moment, and at
the second correction time moment, respectively, and ∆vtot denotes the increased velocity
increment in Substep 3 compared with the result of Substep 2. It is worth noting that the
increased velocity increment differences between the three sets of optimization variables
are not large. Exceptionally, when [∆vsy, ∆vsz] are used as the optimization variables, even
the shooting Equation (37) does not converge, the increased velocity increment still is little.
This further illustrates that it is feasible to equate the lunar swingby with an instantaneous
impulse in the preliminary design, but the error is not negligible. The results corresponding
to [∆vsx, ∆vsy] are adopted for the subsequent design.
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Table 13. Results of swingby correction.

Variables [BTt , BRt]
(km)

∆vs,0
(km/s)

[BTa, BRa]
(km)

∆vs
(km/s)

∆va
(km/s)

∆vb
(km/s)

∆vtot
(km/s)

[∆vsx , ∆vsy]
[−4688.26,−2255.5] 0.6822

[−4687.9280, −2255.5854] 0.6823 0.1697 0.0151 0.1849
[∆vsx , ∆vsz] [−4688.2573, −2255.5030] 0.7049 0.1678 0.0152 0.2057
[∆vsy, ∆vsz] [−4870.1398, −468.9880] 1 0.6832 0.1385 0.0957 0.2352

1 Solving the system of nonlinear equations is not successful.

4.3. Local Optimization and Validation of Simplified Dynamical Models

Based on the above simulation results and analyses, a local optimization with twenty
variables is performed to obtain the high-fidelity solution of low-energy orbital trans-
fer, which is solved by NLopt. We present the low-energy orbital transfer design result
in Figure 14, which shows the initial orbital parameters, the time moment of each impulse
and its component and magnitude, the time moments of entry and escape from the lunar
SOI, and the time moment of escape from the Earth’s SOI. The transfer requires a velocity
increment of 0.8468 km/s from the engine and a total transfer time of 360.6615 days.
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Figure 14. Schematic diagram of low-energy orbital transfer.

Finally, we compare the terminal states obtained under the two-body dynamical
models, the simplified high-fidelity dynamical models, and the high-fidelity dynamical
models with the same initial state and record their computational times of propagating
a single orbit segment. The relative errors in position and velocity and the ratios of
computational times of the results under different dynamical models with respect to the
results under the high-fidelity models are calculated separately and denoted by [er, ev, ct].
The parameters of the high-fidelity dynamical models are the same as those described in
Section 4.1. We use the initial and final time moments and the initial states of the 1st, 3rd,
and 5th orbits in Figure 14 to obtain [er, ev, ct] under different models relative to the high-
fidelity models, collated in Table 14. We can find that the relative error of the state (position
and velocity) under the simplified high-fidelity models in the geocentric low orbit is ∼10−3,
in the geocentric high orbit is ∼10−5, and in the heliocentric orbit is ∼10−6. The ratio
of the computational times between the simplified models and the high-fidelity models
is only ∼10−3. Therefore, simplifying the dynamical models in this work is reasonable
and effective.
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Table 14. Relative errors in terminal states and ratios of computational times under different models.

Orbit Two-Body Dynamical Models Simplified High-Fidelity Dynamical Models

1 [2.7063× 10−2, 4.9719× 10−1, 2.8986× 10−6] [2.2414× 10−4, 2.0569× 10−3, 1.9671× 10−3]
3 [9.2615× 10−2, 1.5074× 10−1, 4.8193× 10−6] [2.8641× 10−5, 4.66314× 10−5, 1.1428× 10−3]
5 [1.9182× 10−3, 5.2137× 10−4, 6.0821× 10−6] [6.8541× 10−6, 7.8446× 10−6, 1.5509× 10−3]

5. Conclusions

An efficient low-energy transfer design approach that includes the lunar swingby
technique and the model continuation technique is proposed in this work. The lunar
swingby technique is presented to increase the escaping energy and, thus, reduce the
velocity increment required for the transfer. This technique includes specific treatments of
the lunar swingby under different dynamical models. In the preliminary design, the effect
of the swingby is equated to an instantaneous impulse and described by two parameters
that are optimized along with other design variables. Then, the transfer orbit is corrected
by three steps: calculating the approximate equivalent orbit in the lunar SOI, correcting the
velocity at departure using the B-plane parameters, and adding two correction impulses
to obtain the accurate orbit under the simplified high-fidelity models. The simulation
results show that the lunar swingby reduces the velocity increment of the transfer, and it
is reasonable to equate it to an instantaneous impulse in the preliminary design, which
provides a good initial value for the subsequent accurate design. The adaptive model
continuation technique is proposed to iterate the transfer design solution from the two-body
dynamical models to the simplified high-fidelity dynamical models. This technique uses
adaptive steps to increase the model continuation coefficients, which control the proportion
of every perturbation acceleration added into the simplified high-fidelity models. A series
of local optimization problems are quickly solved for the transfer trajectories that take full
advantages of various perturbations. The technique is tested with simulations, and the
effect of each perturbation on the velocity increment required for the transfer is concluded,
where the gravitation of the Earth–Moon system for the heliocentric orbits makes an
important contribution to the reduction of the velocity increment.

The presented low-energy orbital transfer design approach for the heliocentric forma-
tion of gravitation wave detection is validated by the example of LISA. The optimization
is repeated 100 times in the two-body dynamical models to obtain 100 sets of solutions,
among which the maximum value of the total velocity increment required for the transfer is
1.2880 km/s, and the minimum value is 1.1619 km/s. The total transfer time of the optimal
solution is 360.7176 days, and the total velocity increment is 1.1619 km/s. According to
the orders of magnitude of the perturbation accelerations and the error in the terminal
state of the transfer orbit calculated under different dynamical models, the simplified high-
fidelity dynamical models for the geocentric orbits, heliocentric orbits, and selenocentric
orbits are built, respectively, and the whole transfer design consisting of three segments
is given in these models. The solutions are iterated from the two-body models to the
simplified high-fidelity models according to the model continuation order determined by
the orders of magnitude of the perturbation accelerations. After being refined by the model
continuation, the total transfer time is 360.8871 days, and the total velocity increment is
0.7758 km/s. The utilization of the gravitation of the Earth–Moon system significantly
reduces the velocity increment of the transfer, especially the magnitude of the impulse
when reaching the target position. The low-energy transfer design is finally refined after
the swingby correction and local optimization. As a result, the transfer of LISA requires
a velocity increment of 0.8468 km/s from the engine and a total transfer time of 360.6615
days. In the early design of the LISA mission, the velocity increment of the transfer to
the LISA configuration from the GTO achieved by Ariane 5 is between 1.5 and 2.1 km/s,
depending on the launch window, and the transfer time is within 16 months [18]. Our
design with less velocity increment and transfer time indicates that specifically utilizing the
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orbital perturbations, especially the lunar gravitation, can significantly favor the low-energy
transfer to high-altitude orbits.
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SOI Sphere of influence
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