Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = lumbrokinase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 4023 KiB  
Article
Leveraging Therapeutic Proteins and Peptides from Lumbricus Earthworms: Targeting SOCS2 E3 Ligase for Cardiovascular Therapy through Molecular Dynamics Simulations
by Nasser Alotaiq, Doni Dermawan and Nasr Eldin Elwali
Int. J. Mol. Sci. 2024, 25(19), 10818; https://doi.org/10.3390/ijms251910818 - 8 Oct 2024
Cited by 9 | Viewed by 1678
Abstract
Suppressor of cytokine signaling 2 (SOCS2), an E3 ubiquitin ligase, regulates the JAK/STAT signaling pathway, essential for cytokine signaling and immune responses. Its dysregulation contributes to cardiovascular diseases (CVDs) by promoting abnormal cell growth, inflammation, and resistance to cell death. This study aimed [...] Read more.
Suppressor of cytokine signaling 2 (SOCS2), an E3 ubiquitin ligase, regulates the JAK/STAT signaling pathway, essential for cytokine signaling and immune responses. Its dysregulation contributes to cardiovascular diseases (CVDs) by promoting abnormal cell growth, inflammation, and resistance to cell death. This study aimed to elucidate the molecular mechanisms underlying the interactions between Lumbricus-derived proteins and peptides and SOCS2, with a focus on identifying potential therapeutic candidates for CVDs. Utilizing a multifaceted approach, advanced computational methodologies, including 3D structure modeling, protein–protein docking, 100 ns molecular dynamics (MD) simulations, and MM/PBSA calculations, were employed to assess the binding affinities and functional implications of Lumbricus-derived proteins on SOCS2 activity. The findings revealed that certain proteins, such as Lumbricin, Chemoattractive glycoprotein ES20, and Lumbrokinase-7T1, exhibited similar activities to standard antagonists in modulating SOCS2 activity. Furthermore, MM/PBSA calculations were employed to assess the binding free energies of these proteins with SOCS2. Specifically, Lumbricin exhibited an average ΔGbinding of −59.25 kcal/mol, Chemoattractive glycoprotein ES20 showed −55.02 kcal/mol, and Lumbrokinase-7T1 displayed −69.28 kcal/mol. These values suggest strong binding affinities between these proteins and SOCS2, reinforcing their potential therapeutic efficacy in cardiovascular diseases. Further in vitro and animal studies are recommended to validate these findings and explore broader applications of Lumbricus-derived proteins. Full article
Show Figures

Figure 1

27 pages, 14865 KiB  
Article
Lumbrokinase Extracted from Earthworms Synergizes with Bevacizumab and Chemotherapeutics in Treating Non-Small Cell Lung Cancer by Targeted Inactivation of BPTF/VEGF and NF-κB/COX-2 Signaling
by Chunyu Hua, Ziyue Guo, Meng Dai, Jie Zhou, Hanxiao Ge, Guoqing Xue, Fahui Xu, Liyuan Ru, Kuan Lv, Guohui Zhang, Lina Zheng, Meiyi Wang, Yun Teng, Wendan Yu and Wei Guo
Biomolecules 2024, 14(7), 741; https://doi.org/10.3390/biom14070741 - 23 Jun 2024
Cited by 5 | Viewed by 3252
Abstract
As a kind of proteolytic enzyme extracted from earthworms, lumbrokinase has been used as an antithrombotic drug clinically. Nevertheless, its potential in anti-cancer, especially in anti-non-small cell lung cancer (NSCLC), as a single form of treatment or in combination with other therapies, [...] Read more.
As a kind of proteolytic enzyme extracted from earthworms, lumbrokinase has been used as an antithrombotic drug clinically. Nevertheless, its potential in anti-cancer, especially in anti-non-small cell lung cancer (NSCLC), as a single form of treatment or in combination with other therapies, is still poorly understood. In this study, we explored the anti-tumor role and the responsive molecular mechanisms of lumbrokinase in suppressing tumor angiogenesis and chemoresistance development in NSCLC and its clinical potential in combination with bevacizumab and chemotherapeutics. Lumbrokinase was found to inhibit cell proliferation in a concentration-dependent manner and caused metastasis suppression and apoptosis induction to varying degrees in NSCLC cells. Lumbrokinase enhanced the anti-angiogenesis efficiency of bevacizumab by down-regulating BPTF expression, decreasing its anchoring at the VEGF promoter region and subsequent VEGF expression and secretion. Furthermore, lumbrokinase treatment reduced IC50 values of chemotherapeutics and improved their cytotoxicity in parental and chemo-resistant NSCLC cells via inactivating the NF-κB pathway, inhibiting the expression of COX-2 and subsequent secretion of PGE2. LPS-induced NF-κB activation reversed its inhibition on NSCLC cell proliferation and its synergy with chemotherapeutic cytotoxicity, while COX-2 inhibitor celecoxib treatment boosted such effects. Lumbrokinase combined with bevacizumab, paclitaxel, or vincristine inhibited the xenograft growth of NSCLC cells in mice more significantly than a single treatment. In conclusion, lumbrokinase inhibited NSCLC survival and sensitized NSCLC cells to bevacizumab or chemotherapeutics treatment by targeted down-regulation of BPTF/VEGF signaling and inactivation of NF-κB/COX-2 signaling, respectively. The combinational applications of lumbrokinase with bevacizumab or chemotherapeutics are expected to be developed as promising candidate therapeutic strategies to improve the efficacy of the original monotherapy in anti-NSCLC. Full article
Show Figures

Graphical abstract

17 pages, 3240 KiB  
Article
Ex Vivo Model to Evaluate the Antibacterial and Anti-Inflammatory Effects of Gelatin–Tricalcium Phosphate Composite Incorporated with Emodin and Lumbrokinase for Bone Regeneration
by Wen-Ling Wang, Yuan-Man Hsu, Meng-Liang Lin, Shih-Shun Chen, Yi-Hui Lai, Chiung-Hua Huang and Chun-Hsu Yao
Bioengineering 2023, 10(8), 906; https://doi.org/10.3390/bioengineering10080906 - 31 Jul 2023
Cited by 4 | Viewed by 2573
Abstract
Tricalcium phosphate (TCP) has gained attention due to its interconnected porous structures which promote fibrovascular invasion and bony replacement. Moreover, when gelatin is added and crosslinked with genipin (GGT), TCP exhibits robust biocompatibility and stability, making it an excellent bone substitute. In this [...] Read more.
Tricalcium phosphate (TCP) has gained attention due to its interconnected porous structures which promote fibrovascular invasion and bony replacement. Moreover, when gelatin is added and crosslinked with genipin (GGT), TCP exhibits robust biocompatibility and stability, making it an excellent bone substitute. In this study, we incorporated emodin and lumbrokinase (LK) into GGT to develop an antibacterial biomaterial. Emodin, derived from various plants, possesses antibacterial and anti-inflammatory properties. LK comprises proteolytic enzymes extracted from the earthworm Lumbricus rubellus and exhibits fibrinolytic activity, enabling it to dissolve biofilms. Additionally, LK stimulates osteoblast activity while inhibiting osteoclast differentiation. GGT was combined with emodin and lumbrokinase to produce the GGTELK composite. The biomedical effects of GGTELK were assessed through in vitro assays and an ex vivo bone defect model. The GGTELK composite demonstrated antibacterial properties, inhibiting the growth of S. aureus and reducing biofilm formation. Moreover, it exhibited anti-inflammatory effects by reducing the secretion of IL-6 in both in vivo cell experiments and the ex vivo model. Therefore, the GGTELK composite, with its stability, efficient degradation, biocompatibility, and anti-inflammatory function, is expected to serve as an ideal bone substitute. Full article
(This article belongs to the Special Issue Biomaterials for Cartilage and Bone Tissue Engineering)
Show Figures

Graphical abstract

14 pages, 3758 KiB  
Article
A Strategy for Rapid Discovery of Marker Peptides Associated with Fibrinolytic Efficacy of Pheretima aspergillum Based on Bioinformatics Combined with Parallel Reaction Monitoring
by Ting-Ting Feng, Jing-Xian Zhang, Yong-Peng Zhang, Jian Sun, Hong Yu, Xiang Tao, Xiu-Hong Mao, Qing Hu and Shen Ji
Molecules 2022, 27(9), 2651; https://doi.org/10.3390/molecules27092651 - 20 Apr 2022
Cited by 5 | Viewed by 2463
Abstract
Quality control of animal-derived traditional Chinese medicines has improved dramatically as proteomics research advanced in the past few decades. However, it remains challenging to identify quality attributes with routine proteomics approaches since protein with fibrinolytic activity is rarely reported in pheretima, a typical [...] Read more.
Quality control of animal-derived traditional Chinese medicines has improved dramatically as proteomics research advanced in the past few decades. However, it remains challenging to identify quality attributes with routine proteomics approaches since protein with fibrinolytic activity is rarely reported in pheretima, a typical animal-derived traditional medicine. A novel strategy based on bioinformatics combined with parallel reaction monitoring (PRM) was developed here to rapidly discover the marker peptides associated with a fibrinolytic effect. Potential marker peptides were found by lumbrokinase sequences’ alignment and in silico digestion. The fibrinogen zymography was used to visually identify fibrinolytic proteins in pheretima. As a result, it was found that the fibrinolytic activity varied among different portions of pheretima. Fibrinolytic proteins were distributed regionally in the anterior and anterior-mid portion and there was no significant fibrinogenolytic activity observed in the mid-posterior and posterior portion. Finally, PRM experiments were deployed to validate and quantify selected marker peptides and a total of 11 peptides were identified as marker peptides, which could be potentially used in quality control of pheretima. This strategy provides a robust workflow to benefit the quality control of other animal-derived traditional medicines. Full article
(This article belongs to the Special Issue State-of-the-Art Analytical Technologies for Natural Products)
Show Figures

Figure 1

20 pages, 9844 KiB  
Article
Bioevaluation of Pheretima vulgaris Antithrombotic Extract, PvQ, and Isolation, Identification of Six Novel PvQ-Derived Fibrinolytic Proteases
by Wanqing Yang, Wenjie Wang, Yunnan Ma, Qilin Yang, Pengyue Li and Shouying Du
Molecules 2021, 26(16), 4946; https://doi.org/10.3390/molecules26164946 - 16 Aug 2021
Cited by 16 | Viewed by 3388
Abstract
Thrombosis is a disease that seriously endangers human health, with a high rate of mortality and disability. However, current treatments with thrombolytic drugs (such as recombinant tissue-plasminogen activator) and the oral anticoagulants (such as dabigatran and rivaroxaban) are reported to have a tendency [...] Read more.
Thrombosis is a disease that seriously endangers human health, with a high rate of mortality and disability. However, current treatments with thrombolytic drugs (such as recombinant tissue-plasminogen activator) and the oral anticoagulants (such as dabigatran and rivaroxaban) are reported to have a tendency of major or life-threatening bleeding, such as intracranial hemorrhage or massive gastrointestinal bleed with non-specific antidotes. In contrast, lumbrokinase is very specific to fibrin as a substrate and does not cause excessive bleeding. It can dissolve the fibrin by itself or convert plasminogen to plasmin by inducing endogenous t-PA activity to dissolve fibrin clots. Therefore, searching for potentially new therapeutic molecules from earthworms is significant. In this study, we first collected a strong fibrinolytic extract (PvQ) from the total protein of the Pheretima vulgaris with AKTA pure protein purification systems; its fibrinolytic bioactivity was verified by the fibrin plate assay and zebrafish thrombotic model of vascular damage. Furthermore, according to the cell culture model of human umbilical vein endothelial cells (HUVECs), the PvQ was proven to exhibit the ability to promote the secretion of tissue-type plasminogen activator (t-PA), which further illustrated that it has an indirect thrombolytic effect. Subsequently, extensive chromatographic techniques were applied to reveal the material basis of the extract. Fortunately, six novel earthworm fibrinolytic enzymes were obtained from the PvQ, and the primary sequences of those functional proteins were determined by LC-MS/MStranscriptome cross-identification and the Edman degradation assay. The secondary structures of these six fibrinolytic enzymes were determined by circular dichroism spectroscopy and the three-dimensional structures of these proteases were predicted by MODELLER 9.23 based on multi-template modelling. In addition, those six genes encoding blood clot-dissolving proteins were cloned from P. vulgaris by RT-PCR amplification, which further determined the accuracy of proteins primary sequences identifications and laid the foundation for subsequent heterologous expression. Full article
Show Figures

Graphical abstract

Back to TopTop