Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = low transformation temperature (LTT)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 58262 KB  
Article
Modelling the Evolution of Phases during Laser Beam Welding of Stainless Steel with Low Transformation Temperature Combining Dilatometry Study and FEM
by Karthik Ravi Krishna Murthy, Fatma Akyel, Uwe Reisgen, Simon Olschok and Dhamini Mahendran
J. Manuf. Mater. Process. 2024, 8(2), 50; https://doi.org/10.3390/jmmp8020050 - 1 Mar 2024
Cited by 5 | Viewed by 2999
Abstract
In this study, the evolution of volume fractions during laser beam welding (LBW) of stainless steel, with a specific focus on incorporating the low transformation temperature (LTT) effect using the dilatometer, has been proposed. The LTT effect refers to the phase transformations that [...] Read more.
In this study, the evolution of volume fractions during laser beam welding (LBW) of stainless steel, with a specific focus on incorporating the low transformation temperature (LTT) effect using the dilatometer, has been proposed. The LTT effect refers to the phase transformations that occur at lower temperatures and lead to the formation of a martensitic microstructure, which will significantly influence the residual stresses and distortion of the welded joints. In this research, the LTT conditions are achieved by varying the Cr and Ni content in the weld seam by varying the weld parameter, including laser power, welding speed and filler wire speed. The dilatometer analysis technique is employed to simulate the thermal conditions encountered during LBW. By subjecting the stainless steel samples to controlled heating and cooling cycles, the kinetics of the volume fractions can be measured using the lever rule and empirical method (KOP and Lee). The phase transformation simulation model is computed by integrating the thermal and metallurgical effects to predict the volume fractions in LBW joints and has been validated using dilatometer results. This provides valuable insight into the relationship between welding parameters and phase transformations in stainless steel with the LTT effect during laser beam welding. Using this relationship, the weld quality can be improved by reducing the residual stresses and distortion. Full article
(This article belongs to the Special Issue Advanced Joining Processes and Techniques 2023)
Show Figures

Figure 1

19 pages, 13875 KB  
Article
Residual Stress Reduction with the LTT Effect in Low Carbon Manganese-Steel through Chemical Composition Manipulation Using Dissimilar Filler Material in Laser Beam Welding
by Fatma Akyel, Maximilian Gamerdinger, Simon Olschok, Uwe Reisgen, Alexander Schwedt and Joachim Mayer
Metals 2022, 12(6), 911; https://doi.org/10.3390/met12060911 - 26 May 2022
Cited by 11 | Viewed by 2803
Abstract
This paper investigates the manipulation of chemical composition of a laser weld by dissimilar filler material and its effect on residual stress. The aim is to minimize residual stresses in the weld seam. In order to negate residual stresses, dissimilar combinations of low-carbon [...] Read more.
This paper investigates the manipulation of chemical composition of a laser weld by dissimilar filler material and its effect on residual stress. The aim is to minimize residual stresses in the weld seam. In order to negate residual stresses, dissimilar combinations of low-carbon manganese steel (S235JR) base material with high-alloyed solid filler wires (G19 9 and G25 20), as well as similar combinations with low-alloyed solid filler wire G3Si1 are analyzed. The goal of the paper is to show that the so-called low-transformation-temperature effect can be used to induce residual compressive stresses in a weld without the use of specially manufactured filler wires. Chemical compositions are generated within a laser-beam-welding process by means of dilution, proving that the concept of in situ alloying is usable in order to affect the martensite formation on a weld. Dilatometry measurements show that a varying Cr and Ni content in a weld reduces the phase-transformation temperature and increases dilatation. EBSD analysis indicates that a fully martensitic weld with a negligible amount of retained austenite is created while the base material preserves its ferritic-pearlitic microstructure. Residual stress measurements with the hole-drilling method demonstrate a reduction in longitudinal tensile residual stresses, whereby the magnitude of the induced residual compressive stresses depend on the Ms temperature. As a result of this research, it was proven that a reduction in tensile residual stress by means of targeted alloying with conventional materials in low-carbon manganese steel is possible. Under the experimental conditions, residual stress in the weld seam could be reduced to 0 MPa. In some cases, even compressive residual stress in the weld could be achieved. Full article
Show Figures

Figure 1

9 pages, 1926 KB  
Article
Time-Resolved Neutron Bragg-Edge Imaging: A Case Study by Observing Martensitic Phase Formation in Low Temperature Transformation (LTT) Steel during GTAW
by Axel Griesche, Beate Pfretzschner, Ugur Alp Taparli and Nikolay Kardjilov
Appl. Sci. 2021, 11(22), 10886; https://doi.org/10.3390/app112210886 - 18 Nov 2021
Cited by 3 | Viewed by 2767
Abstract
Polychromatic and wavelength-selective neutron transmission radiography were applied during bead-on-plate welding on 5 mm thick sheets on the face side of martensitic low transformation temperature (LTT) steel plates using gas tungsten arc welding (GTAW). The in situ visualization of austenitization upon welding and [...] Read more.
Polychromatic and wavelength-selective neutron transmission radiography were applied during bead-on-plate welding on 5 mm thick sheets on the face side of martensitic low transformation temperature (LTT) steel plates using gas tungsten arc welding (GTAW). The in situ visualization of austenitization upon welding and subsequent α’-martensite formation during cooling could be achieved with a temporal resolution of 2 s for monochromatic imaging using a single neutron wavelength and of 0.5 s for polychromatic imaging using the full spectrum of the beam (white beam). The spatial resolution achieved in the experiments was approximately 200 µm. The transmitted monochromatic neutron beam intensity at a wavelength of λ = 0.395 nm was significantly reduced during cooling below the martensitic start temperature Ms since the emerging martensitic phase has a ~10% higher attenuation coefficient than the austenitic phase. Neutron imaging was significantly influenced by coherent neutron scattering caused by the thermal motion of the crystal lattice (Debye–Waller factor), resulting in a reduction in the neutron transmission by approx. 15% for monochromatic and by approx. 4% for polychromatic imaging. Full article
(This article belongs to the Special Issue Novel Approaches for Nondestructive Testing and Evaluation)
Show Figures

Graphical abstract

11 pages, 4485 KB  
Article
Relationship between Residual Stress and Net Strain in Low-Temperature Transformation Weldments Considering Microstructure
by Jaehee Lee, Youngchai Lee and Changhee Lee
Metals 2021, 11(5), 755; https://doi.org/10.3390/met11050755 - 3 May 2021
Cited by 2 | Viewed by 2702
Abstract
Weldments inevitably shrink during cooling from the melt pool. Residual stresses then occur owing to surrounding constraints. Tensile residual stresses in weldments cause various problems, such as deformation and reduction of fatigue strength. Low-temperature transformation (LTT) welding consumables can reduce the tensile residual [...] Read more.
Weldments inevitably shrink during cooling from the melt pool. Residual stresses then occur owing to surrounding constraints. Tensile residual stresses in weldments cause various problems, such as deformation and reduction of fatigue strength. Low-temperature transformation (LTT) welding consumables can reduce the tensile residual stress through volume expansion, which accompanies a phase transformation from austenite to martensite. In this study, the relationship between residual stress and net strain was examined, mainly by controlling the martensite start (Ms) temperature, and the result was related to the weld’s microstructure. The Ms temperature and the expansion accompanying the phase transformation were analyzed by the dilatometric method. A hole drilling test was carried out to measure the residual stress in the weldments. The highest compressive stress was observed in the most expanded weldment at room temperature, and a linear relationship between the net strain and residual stress was derived. This linear relationship was analyzed with a microstructural approach. Full article
Show Figures

Graphical abstract

14 pages, 9367 KB  
Article
Investigation of the Residual Stress in a Multi-Pass T-Welded Joint Using Low Transformation Temperature Welding Wire
by Zhongyuan Feng, Ninshu Ma, Seiichiro Tsutsumi and Fenggui Lu
Materials 2021, 14(2), 325; https://doi.org/10.3390/ma14020325 - 10 Jan 2021
Cited by 17 | Viewed by 3350
Abstract
We investigated whether low transformation temperature (LTT) welding materials are beneficial to the generation of compressive residual stress around a weld zone, thus enhancing the fatigue performance of the welded joint. An experimental and numerical study were conducted in order to analyze the [...] Read more.
We investigated whether low transformation temperature (LTT) welding materials are beneficial to the generation of compressive residual stress around a weld zone, thus enhancing the fatigue performance of the welded joint. An experimental and numerical study were conducted in order to analyze the residual stress in multi-pass T-welded joints using LTT welding wire. It was found that, compared to the conventional welded joint, greater tensile residual stress was induced in the flange plate of the LTT welded joints. This was attributed to the reheat temperature of the LTT weld pass during the multi-pass welding. The formerly-formed LTT weld pass with a reheat temperature lower than the austenite finish temperature converted the compressive residual stress into tensile stress. The compressive residual stress was generated in the regions with a reheat temperature higher than the austenite finish temperature, indicating that LTT welding materials are more suitable for single-pass welding. Full article
Show Figures

Figure 1

14 pages, 3866 KB  
Article
Effects of High Toughness and Welding Residual Stress for Unstable Fracture Prevention
by Gyubaek An, Jeongung Park and Ilwook Han
Appl. Sci. 2020, 10(23), 8613; https://doi.org/10.3390/app10238613 - 1 Dec 2020
Cited by 6 | Viewed by 3282
Abstract
Unstable fractures generally occur in brittle materials under low-temperature service conditions. Toughness and welding residual stress are the main factors that should be evaluated when defining a brittle crack propagation path. In this study, a rainbow welding technique was proposed and confirmed as [...] Read more.
Unstable fractures generally occur in brittle materials under low-temperature service conditions. Toughness and welding residual stress are the main factors that should be evaluated when defining a brittle crack propagation path. In this study, a rainbow welding technique was proposed and confirmed as being significantly useful in preventing unstable fractures in weld joints. The residual compressive stress in the crack front was particularly useful for decreasing the possibility of brittle fracture. The objective was to examine the effect of high welding consumable toughness welding residual stress, especially for avoiding brittle fracture through welding residual compressive stress. Full article
Show Figures

Figure 1

17 pages, 3973 KB  
Article
Solidification Cracking Assessment of LTT Filler Materials by Means of Varestraint Testing and µCT
by Florian Vollert, Maximilian Thomas, Arne Kromm and Jens Gibmeier
Materials 2020, 13(12), 2726; https://doi.org/10.3390/ma13122726 - 15 Jun 2020
Cited by 3 | Viewed by 2821
Abstract
Investigations of the weldability of metals often deal with hot cracking, as one of the most dreaded imperfections during weld fabrication. The hot cracking investigations presented in this paper were carried out as part of a study on the development of low transformation [...] Read more.
Investigations of the weldability of metals often deal with hot cracking, as one of the most dreaded imperfections during weld fabrication. The hot cracking investigations presented in this paper were carried out as part of a study on the development of low transformation temperature (LTT) weld filler materials. These alloys allow to mitigate tensile residual stresses that usually arise during welding using conventional weld filler materials. By this means, higher fatigue strength and higher lifetimes of the weld can be achieved. However, LTT weld filler materials are for example, high-alloyed Cr/Ni steels that are susceptible to the formation of hot cracks. To assess hot cracking, we applied the standardized modified varestraint transvarestraint hot cracking test (MVT), which is well appropriate to evaluate different base or filler materials with regard to their hot cracking susceptibility. In order to consider the complete material volume for the assessment of hot cracking, we additionally applied microfocus X-ray computer tomography (µCT). It is shown that by a suitable selection of welding and MVT parameter the analysis of the complete 3D hot crack network can provide additional information with regard to the hot cracking model following Prokhorov. It is now possible to determine easy accessible substitute values (e.g., maximum crack depth) for the extent of the Brittleness Temperature Range (BTR) and the minimum critical strain P m i n . Full article
Show Figures

Figure 1

15 pages, 7225 KB  
Article
The Effect of Martensitic Phase Transformation Dilation on Microstructure, Strain–Stress and Mechanical Properties for Welding of High-Strength Steel
by Xizhang Chen, Pengfei Wang, Qiuhong Pan and Sanbao Lin
Crystals 2018, 8(7), 293; https://doi.org/10.3390/cryst8070293 - 15 Jul 2018
Cited by 12 | Viewed by 4962
Abstract
The application of low transformation temperature (LTT) wire can effectively reduce residual stress, without the need for preheating before welding and heat treatment after welding. The mechanism reduces the martensitic transformation temperature, allowing the martensite volume expansion to offset some or all of [...] Read more.
The application of low transformation temperature (LTT) wire can effectively reduce residual stress, without the need for preheating before welding and heat treatment after welding. The mechanism reduces the martensitic transformation temperature, allowing the martensite volume expansion to offset some or all of the heat-shrinking, resulting in reduced residual stress during the welding process. In this paper, commercial ER110S-G welding wire and LTT wire with chemical composition Cr10Ni8MnMoCuTiVB were developed to solve the problem of stress concentration. The microstructure of the LTT joint is mainly composed of martensite and a small amount of residual austenite, while the microstructure of the ER110S-G joint is mainly composed of ferrite and a small amount of granular bainite. The micro-hardness and tensile strength of the LTT joint is higher than that of ER110S-G joint; however, the impact toughness of the LTT joint is not as good as that of the ER110S-G joint. The martensitic phase transformation of LTT starts at 212 °C and finishes at around 50 °C, and the expansion caused by phase transition is about 0.48%, which is much higher than that of the base metal (0.15%) and ER110S-G (0.18%). The residual tensile stress at the weld zone of the ER110S-G joint is 175.5 MPa, while the residual compressive stress at the weld zone of LTT joint is −257.6 MPa. Full article
(This article belongs to the Special Issue Microstructures and Properties of Martensitic Materials)
Show Figures

Figure 1

14 pages, 4737 KB  
Article
Neutron Diffraction Evaluation of Near Surface Residual Stresses at Welds in 1300 MPa Yield Strength Steel
by Ebrahim Harati, Leif Karlsson, Lars-Erik Svensson, Thilo Pirling and Kamellia Dalaei
Materials 2017, 10(6), 593; https://doi.org/10.3390/ma10060593 - 29 May 2017
Cited by 12 | Viewed by 5205
Abstract
Evaluation of residual stress in the weld toe region is of critical importance. In this paper, the residual stress distribution both near the surface and in depth around the weld toe was investigated using neutron diffraction, complemented with X-ray diffraction. Measurements were done [...] Read more.
Evaluation of residual stress in the weld toe region is of critical importance. In this paper, the residual stress distribution both near the surface and in depth around the weld toe was investigated using neutron diffraction, complemented with X-ray diffraction. Measurements were done on a 1300 MPa yield strength steel welded using a Low Transformation Temperature (LTT) consumable. Near surface residual stresses, as close as 39 µm below the surface, were measured using neutron diffraction and evaluated by applying a near surface data correction technique. Very steep surface stress gradients within 0.5 mm of the surface were found both at the weld toe and 2 mm into the heat affected zone (HAZ). Neutron results showed that the LTT consumable was capable of inducing near surface compressive residual stresses in all directions at the weld toe. It is concluded that there are very steep stress gradients both transverse to the weld toe line and in the depth direction, at the weld toe in LTT welds. Residual stress in the base material a few millimeters from the weld toe can be very different from the stress at the weld toe. Care must, therefore, be exercised when relating the residual stress to fatigue strength in LTT welds. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Figure 1

7 pages, 3808 KB  
Article
Polarized Light Microscopy Study on the Reentrant Phase Transition in a (Ba1 – xKx)Fe2As2 Single Crystal with x = 0.24
by Yong Liu, Makariy A. Tanatar, Erik Timmons and Thomas A. Lograsso
Crystals 2016, 6(11), 142; https://doi.org/10.3390/cryst6110142 - 9 Nov 2016
Cited by 3 | Viewed by 6986
Abstract
A sequence of structural/magnetic transitions on cooling is reported in the literature for hole-doped iron-based superconductor (Ba1 − xKx)Fe2As2 with x = 0.24. By using polarized light microscopy, we directly observe the formation of orthorhombic domains [...] Read more.
A sequence of structural/magnetic transitions on cooling is reported in the literature for hole-doped iron-based superconductor (Ba1 − xKx)Fe2As2 with x = 0.24. By using polarized light microscopy, we directly observe the formation of orthorhombic domains in (Ba1 − xKx)Fe2As2 (x = 0.24) single crystal below a temperature of simultaneous structural/magnetic transition TN ~ 80 K. The structural domains vanish below ~30 K, but reappear below T = 15 K. Our results are consistent with reentrance transformation sequence from high-temperature tetragonal (HTT) to low temperature orthorhombic (LTO1) structure at TN ~ 80 K, LTO1 to low temperature tetragonal (LTT) structure at Tc ~ 25 K, and LTT to low temperature orthorhombic (LTO2) structure at T ~ 15 K. Full article
(This article belongs to the Special Issue Correlated Electron Crystals)
Show Figures

Graphical abstract

Back to TopTop