Composting chicken manure is a source of significant ammonia (NH
3) emissions, which, because of propagation, contributes to the eutrophication of the environment and decreases in air quality. Therefore, it is reasonable to use methods to limit its emission into the atmosphere.
[...] Read more.
Composting chicken manure is a source of significant ammonia (NH
3) emissions, which, because of propagation, contributes to the eutrophication of the environment and decreases in air quality. Therefore, it is reasonable to use methods to limit its emission into the atmosphere. Biofiltration, using the metabolic activity of nitrifying and heterotrophic microorganisms capable of oxidizing ammonia, is an effective method to reduce ammonia emissions. In addition, the performance of the biofiltration process depends on operational parameters such as the humidity of the medium, the temperature, the contact time of the gas with the biofiltering medium, and the chemical composition and structure of the filter material. The aim of the study was to evaluate the effectiveness of biofilter fillings in reducing ammonia emissions from composting chicken manure along with the identification of factors allowing us to determine the proposed design solution as the most advantageous in terms of efficiency. Experiments on reducing odour emissions with biofiltration were carried out in two compact composting reactors, in which a compost mixture with a C:N ratio of 10:1 was used. The mixture was prepared in a ratio of 5:1 of chicken manure to the structuring material, with wheat straw used as the structuring material. Based on the results of the research on the course of the composting process, high values of ammonia concentration were recorded. Ammonia concentrations of 886 ppm (composter 1) and 811 ppm (composter 2) were recorded, which confirms the intensive nature of this gas emissions during the process of stabilizing the chicken manure. As part of the conducted research, the effectiveness of biofiltration in reducing ammonia emissions was evaluated by analysing the influence of the aeration intensity of the biofilter (20 dm
3/h and 50 dm
3/h), directly determining the time of contact of the gas with the bed (EBCT—
Empty Bed Contact Time). Coconut-activated carbon was used as a filter bed, which was an effective carrier for the development of microorganisms responsible for the biological removal of ammonia from waste gases generated during composting. In addition, this material showed the ability to physically adsorb ammonia, thus supporting the process of its elimination. Each of the test stations has been equipped with a biofiltration installation. To determine the effectiveness of biological removal of ammonia and to assess the legitimacy of the use of selected strains of microorganisms in the process of biological removal of ammonia, the bed of one of the biofilters (biofilter 2) was inoculated with a strain of nitrifying bacteria. During the study, the high efficiency of ammonia removal because of biofiltration was noted in each of the configurations. In the case of an aeration intensity of 20 dm
3/h, a reduction in emissions of 99% was achieved; with a higher aeration value, i.e., 50 dm
3/h, the efficiency was 89%. These results indicate that the intensity of aeration has a significant impact on the efficiency of the biofiltration process. The analysis of a biofilter enriched with a strain of nitrifying bacteria requires long-term testing. This is important to reliably determine the effect of inoculation on the efficiency of the biological removal of ammonia in biofilters. It has been shown that optimizing these factors allows us to achieve a reduction in ammonia emissions of up to 90%, while minimizing the formation of unpleasant odours. The use of biofiltration in composting systems for organic waste of animal origin is an effective, sustainable solution that fits into the idea of sustainable development, combining the efficiency of air purification technology with environmental protection and the responsible management of resources. This study demonstrates that biofiltration using coconut-shell-activated carbon is an effective and economical method for reducing ammonia and odour emissions from composting chicken manure. The results provide valuable theoretical and practical information on emissions management in organic waste composting processes. Data from this study could be useful in developing strategies to minimize odour emissions, including from the agricultural sector.
Full article