Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = long haulage of coal by belt conveyors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 10995 KiB  
Article
Using RES Surpluses to Remove Overburden from Lignite Mines Can Improve the Nation’s Energy Security
by Leszek Jurdziak, Witold Kawalec, Zbigniew Kasztelewicz and Pawel Parczyk
Energies 2025, 18(1), 104; https://doi.org/10.3390/en18010104 - 30 Dec 2024
Cited by 2 | Viewed by 1092
Abstract
The increasing use of renewable energy sources, such as wind and solar energy, presents challenges to the stability and efficiency of other energy sources due to their intermittent and unpredictable surpluses. The unintended consequence of stabilizing the power supply system is an increase [...] Read more.
The increasing use of renewable energy sources, such as wind and solar energy, presents challenges to the stability and efficiency of other energy sources due to their intermittent and unpredictable surpluses. The unintended consequence of stabilizing the power supply system is an increase in emissions and external costs from the suboptimal use of coal power plants. The rising number of RES curtailments needs to be addressed by either the adjusting energy supply from fossil fuel or the flexible energy consumption. In Poland’s energy mix, coal-fired power plants are a critical component in ensuring energy security for the foreseeable future. Using domestic lignite to generate a total power of 8.5 GW can stabilize the national power supply, as it is currently done in Germany, where 15 GW of lignite-fueled power units provide the power supply base for the country. The leading Belchatów power plant comprises 10 retrofitted units and one new unit, with a total rating of 5.5 GW. Access to the new coal deposit, Zloczew, is necessary to ensure its longer operation. The other domestic lignite power plants are located in Central Poland at Patnów (0.47 GW from the new unit and 0.6 GW from its three retrofitted counterparts) and located in the Lusatian lignite basin at Turów (operating a brand new unit rated at 0.5 GW and retrofitted units with a total rating of 1.5 GW). The use of this fuel is currently being penalized as a result of increasing carbon costs. However, the continuous surface mining technology that is used in lignite mines is fully electrified, and large amounts of electric energy are required to remove and dump overburden and mining coal and its conveying to power units (the transport of coal from the new lignite mine Zloczew to the Belchatów power plant would be a long-distance operation). A possible solution to this problem is to focus on the lignite fuel supply operations of these power plants, with extensive simulations of the entire supply chain. A modern lignite mine is operated by one control room, and it can balance the dynamic consumption of surplus renewable energy sources (RESs) and reduce the need for reduction. When a lignite supply chain is operated this way, a high-capacity power bank can be created with energy storage in the form of an open brown coal seam. This would enable an almost emission-free supply of cheap and domestic fossil fuel, making it insensitive to changes in the world prices of energy resources for power units operating at the base of the system. Furthermore, extending the life of relatively new and efficient lignite-fired units in Poland would facilitate the decommissioning of older and exhausted hard coal-fired units. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

Back to TopTop