Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = local adaptive sparsification

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 547 KB  
Article
State-DynAttn: A Hybrid State-Space and Dynamic Graph Attention Architecture for Robust Air Traffic Flow Prediction Under Weather Disruptions
by Fei Yan and Huawei Wang
Mathematics 2025, 13(20), 3346; https://doi.org/10.3390/math13203346 - 21 Oct 2025
Viewed by 390
Abstract
We propose State-DynAttn, a hybrid architecture for robust air traffic flow prediction under weather disruptions, which integrates state-space models (SSMs) with dynamic graph attention to address the challenges of long-range dependency modeling and adaptive spatial–temporal relationship learning. The increasing complexity of air traffic [...] Read more.
We propose State-DynAttn, a hybrid architecture for robust air traffic flow prediction under weather disruptions, which integrates state-space models (SSMs) with dynamic graph attention to address the challenges of long-range dependency modeling and adaptive spatial–temporal relationship learning. The increasing complexity of air traffic systems, exacerbated by unpredictable weather events, demands methods that can simultaneously capture global temporal patterns and localized disruptions; existing approaches often struggle to balance these requirements efficiently. The proposed method employs two parallel branches: an SSM branch for continuous-time recurrent modeling of long-range dependencies with linear complexity, and a dynamic graph attention branch that adaptively computes node-pair weights while incorporating weather severity features through sparsification strategies for scalability. These branches are fused via a data-dependent gating mechanism, enabling the model to dynamically prioritize either global temporal dynamics or localized spatial interactions based on input conditions. Moreover, the architecture leverages memory-efficient attention computation and HiPPO initialization to ensure stable training and inference. Experiments on real-world air traffic datasets demonstrate that State-DynAttn outperforms existing baselines in prediction accuracy and robustness, particularly under severe weather scenarios. The framework’s ability to handle both gradual traffic evolution and abrupt disruption-induced changes makes it suitable for real-world deployment in air traffic management systems. Furthermore, the design principles of State-DynAttn can be extended to other spatiotemporal prediction tasks where long-range dependencies and dynamic relational structures coexist. This work contributes a principled approach to hybridizing state-space models with graph-based attention, offering insights into the trade-offs between computational efficiency and modeling flexibility in complex dynamical systems. Full article
Show Figures

Figure 1

14 pages, 563 KB  
Article
Communication-Efficient Wireless Traffic Prediction with Federated Learning
by Fuwei Gao, Chuanting Zhang, Jingping Qiao, Kaiqiang Li and Yi Cao
Mathematics 2024, 12(16), 2539; https://doi.org/10.3390/math12162539 - 17 Aug 2024
Cited by 5 | Viewed by 1726
Abstract
Wireless traffic prediction is essential to developing intelligent communication networks that facilitate efficient resource allocation. Along this line, decentralized wireless traffic prediction under the paradigm of federated learning is becoming increasingly significant. Compared to traditional centralized learning, federated learning satisfies network operators’ requirements [...] Read more.
Wireless traffic prediction is essential to developing intelligent communication networks that facilitate efficient resource allocation. Along this line, decentralized wireless traffic prediction under the paradigm of federated learning is becoming increasingly significant. Compared to traditional centralized learning, federated learning satisfies network operators’ requirements for sensitive data protection and reduces the consumption of network resources. In this paper, we propose a novel communication-efficient federated learning framework, named FedCE, by developing a gradient compression scheme and an adaptive aggregation strategy for wireless traffic prediction. FedCE achieves gradient compression through top-K sparsification and can largely relieve the communication burdens between local clients and the central server, making it communication-efficient. An adaptive aggregation strategy is designed by quantifying the different contributions of local models to the global model, making FedCE aware of spatial dependencies among various local clients. We validate the effectiveness of FedCE on two real-world datasets. The results demonstrate that FedCE can improve prediction accuracy by approximately 27% with only 20% of communications in the baseline method. Full article
(This article belongs to the Section E1: Mathematics and Computer Science)
Show Figures

Figure 1

12 pages, 1184 KB  
Article
Incremental Learning for LiDAR Attack Recognition Framework in Intelligent Driving Using Gaussian Processes
by Zujia Miao, Cuiping Shao, Huiyun Li and Yunduan Cui
World Electr. Veh. J. 2024, 15(8), 362; https://doi.org/10.3390/wevj15080362 - 12 Aug 2024
Viewed by 1607
Abstract
The perception system plays a crucial role by integrating LiDAR and various sensors to perform localization and object detection, which ensures the security of intelligent driving. However, existing research indicates that LiDAR is vulnerable to sensor attacks, which lead to inappropriate driving strategies [...] Read more.
The perception system plays a crucial role by integrating LiDAR and various sensors to perform localization and object detection, which ensures the security of intelligent driving. However, existing research indicates that LiDAR is vulnerable to sensor attacks, which lead to inappropriate driving strategies and need effective attack recognition methods. Previous LiDAR attack recognition methods rely on fixed anomaly thresholds obtained from depth map data distributions in specific scenarios as static anomaly boundaries, which lead to reduced accuracy, increased false alarm rates, and a lack of performance stability. To address these problems, we propose an adaptive LiDAR attack recognition framework capable of adjusting to different driving scenarios. This framework initially models the perception system by integrating the vehicle dynamics model and object tracking algorithms to extract data features, subsequently employing Gaussian Processes for the probabilistic modeling of these features. Finally, the framework employs sparsification computing techniques and a sliding window strategy to continuously update the Gaussian Process model with window data, which achieves incremental learning that generates uncertainty estimates as dynamic anomaly boundaries to recognize attacks. The performance of the proposed framework has been evaluated extensively using the real-world KITTI dataset covering four driving scenarios. Compared to previous methods, our framework achieves a 100% accuracy rate and a 0% false positive rate in the localization system, and an average increase of 3.43% in detection accuracy in the detection system across the four scenarios, which demonstrates superior adaptive capabilities. Full article
(This article belongs to the Special Issue Design Theory, Method and Control of Intelligent and Safe Vehicles)
Show Figures

Figure 1

19 pages, 3147 KB  
Article
Kernel Mixture Correntropy Conjugate Gradient Algorithm for Time Series Prediction
by Nan Xue, Xiong Luo, Yang Gao, Weiping Wang, Long Wang, Chao Huang and Wenbing Zhao
Entropy 2019, 21(8), 785; https://doi.org/10.3390/e21080785 - 11 Aug 2019
Cited by 7 | Viewed by 3670
Abstract
Kernel adaptive filtering (KAF) is an effective nonlinear learning algorithm, which has been widely used in time series prediction. The traditional KAF is based on the stochastic gradient descent (SGD) method, which has slow convergence speed and low filtering accuracy. Hence, a kernel [...] Read more.
Kernel adaptive filtering (KAF) is an effective nonlinear learning algorithm, which has been widely used in time series prediction. The traditional KAF is based on the stochastic gradient descent (SGD) method, which has slow convergence speed and low filtering accuracy. Hence, a kernel conjugate gradient (KCG) algorithm has been proposed with low computational complexity, while achieving comparable performance to some KAF algorithms, e.g., the kernel recursive least squares (KRLS). However, the robust learning performance is unsatisfactory, when using KCG. Meanwhile, correntropy as a local similarity measure defined in kernel space, can address large outliers in robust signal processing. On the basis of correntropy, the mixture correntropy is developed, which uses the mixture of two Gaussian functions as a kernel function to further improve the learning performance. Accordingly, this article proposes a novel KCG algorithm, named the kernel mixture correntropy conjugate gradient (KMCCG), with the help of the mixture correntropy criterion (MCC). The proposed algorithm has less computational complexity and can achieve better performance in non-Gaussian noise environments. To further control the growing radial basis function (RBF) network in this algorithm, we also use a simple sparsification criterion based on the angle between elements in the reproducing kernel Hilbert space (RKHS). The prediction simulation results on a synthetic chaotic time series and a real benchmark dataset show that the proposed algorithm can achieve better computational performance. In addition, the proposed algorithm is also successfully applied to the practical tasks of malware prediction in the field of malware analysis. The results demonstrate that our proposed algorithm not only has a short training time, but also can achieve high prediction accuracy. Full article
(This article belongs to the Special Issue Information Theoretic Learning and Kernel Methods)
Show Figures

Figure 1

21 pages, 33351 KB  
Article
Hyperspectral Image Resolution Enhancement Approach Based on Local Adaptive Sparse Unmixing and Subpixel Calibration
by Yidan Teng, Ye Zhang, Chunli Ti and Junping Zhang
Remote Sens. 2018, 10(4), 592; https://doi.org/10.3390/rs10040592 - 11 Apr 2018
Cited by 3 | Viewed by 4071
Abstract
Unmixing based fusion aims at generating a high spectral-spatial resolution image (HSS) with the same surface features of the high spatial resolution multispectral image (MS) and low spatial resolution hyperspectral image (HS). In this paper, a new fusion method is proposed to improve [...] Read more.
Unmixing based fusion aims at generating a high spectral-spatial resolution image (HSS) with the same surface features of the high spatial resolution multispectral image (MS) and low spatial resolution hyperspectral image (HS). In this paper, a new fusion method is proposed to improve the fusion performance by taking further advantage of the distribution characteristics of ground objects. First, we put forward a local adaptive sparse unmixing based fusion (LASUF) algorithm, in which the sparsity of the abundance matrices is appended as the constraint to the optimization fusion, considering the limited categories of ground objects in a specific range and the local correlation of their distribution. Then, to correct the possible original subpixel misregistrations or those introduced by the fusion procedures, a subpixel calibration method based on optimal matching adaptive morphology filtering (OM-AMF) is designed. Experiments on various datasets captured by different sensors demonstrate that the proposed fusion algorithm surpasses other typical fusion techniques in both spatial and spectral domains. The proposed method effectively preserves the spectral composition features of the isolated ground objects within a small area. In addition, the OM-AMF postprocessing is able to spatially correct the fusion results at a subpixel level and preserve the spectral features simultaneously. Full article
(This article belongs to the Section Remote Sensing Image Processing)
Show Figures

Graphical abstract

Back to TopTop