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Abstract: Unmixing based fusion aims at generating a high spectral-spatial resolution image (HSS)
with the same surface features of the high spatial resolution multispectral image (MS) and low
spatial resolution hyperspectral image (HS). In this paper, a new fusion method is proposed to
improve the fusion performance by taking further advantage of the distribution characteristics of
ground objects. First, we put forward a local adaptive sparse unmixing based fusion (LASUF)
algorithm, in which the sparsity of the abundance matrices is appended as the constraint to the
optimization fusion, considering the limited categories of ground objects in a specific range and the
local correlation of their distribution. Then, to correct the possible original subpixel misregistrations
or those introduced by the fusion procedures, a subpixel calibration method based on optimal
matching adaptive morphology filtering (OM-AMF) is designed. Experiments on various datasets
captured by different sensors demonstrate that the proposed fusion algorithm surpasses other typical
fusion techniques in both spatial and spectral domains. The proposed method effectively preserves
the spectral composition features of the isolated ground objects within a small area. In addition,
the OM-AMF postprocessing is able to spatially correct the fusion results at a subpixel level and
preserve the spectral features simultaneously.

Keywords: unmixing based fusion; hyperspectral; local adaptive sparsification; subpixel calibration;
optimal matching adaptive morphology filtering

1. Introduction

Along with the innovation of imaging spectroscopy, hyperspectral (HS) images can provide a
spatial scene in hundreds of spectral channels. The high spectral resolution can reflect diagnostic
spectrum characteristics of ground materials, and HS data have obvious superiority in aspects such as
precision agriculture, anomaly detection, mineral exploration and terrain classification. Nevertheless,
the spatial resolution of HS imagery is relatively low compared to panchromatic (PAN) imagery and
multispectral (MS) imagery in order to maintain an acceptable signal-to-noise ratio (SNR), narrow the
spectral bandwidth needed to increase instantaneous field of view (IFOV), while having high spatial
resolution (small IFOV) system needed to broaden spectral channel. Due to the trade-off between
spectral and spatial information quality, it is hard to directly get high spectral-spatial (HSS) resolution
data, which are required in various applications. Performing algorithms from image processing
perspective is a very feasible way to overcome this problem.

To obtain HSS data, plenty of resolution enhancement methods can be found in literature [1–3].
Under certain circumstances, auxiliary information can be hard to acquire, and single image
super-resolution aims to reconstruct high spatial resolution data from low-resolution HS images.
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The basic approach through traditional interpolators was simple and fast, but it did not enhance the
details. Various regularization-based methods were proposed to solve such an ill-posed problem
including total variation regularization [4], sparse representation [5], and self-similarity grouping [6].
The introduction of regularization terms can preserve the edges and textures, so better performances
were realized during the super-resolution process. Gu et al. [7] mapped abundance after unmixing on
a high-resolution grid using spatial correlation to get resolution enhanced data. However, single image
super-resolution mainly depends on priori and models, which are not universally applicable. With the
development of a remote sensing platform carrying different sensors, multi sources are more available.
Component substitution (CS) [8–10] relied on replacing components of MS data by panchromatic
images. A multiresolution analysis (MRA) based approach injected spatial details obtained from
multiscale decomposition of panchromatic images into MS data [11,12]. A combination of CS and MRA,
named Hybrid, and a series of derivative algorithms were proposed to provide an appropriate balance
between spatial and spectral preservation [13,14]. Pansharpening techniques achieved remarkable
results due to information injection and were extended to HS and MS imagery fusion in the last few
decades. Since both spatial and spectral information is contained in MS images, and the corresponding
bands are highly correlated to HS images, image fusion has received extensive attention [15]. In this
paper, we mainly discuss the HSS image generation utilizing HS and MS image fusion techniques.

From the literature, the first algorithm of merging HS and MS images was a wavelet-based
method [16]. Both the images were transformed in wavelet space and then combined according to
a fusion rule. Then, the contourlet transform compromising multi-scale and directional filters in
its structure was developed [17]. Some researchers established the observation model between HS
and MS images to estimate HSS data. Eismann [18–20] developed a maximum a posteriori (MAP)
estimator incorporating with a stochastic mixing model (SMM), and minimized the objective function
considering the underlying spectral characteristics and spatial position to get the optimal estimation.
The Bayesian estimator [21–25] was another popular approach suited for the observation model.
The spectral response function needed to be explored, and then the distribution of HS and MS data
was estimated by the assumed priori distribution. The fusion model was processed via the posteriori
distribution. The key step was the definition of the penalization term, and various estimators can be
implemented: native Gaussian prior, sparse representation promoted prior, and vector total variation
prior. Unmixing based fusion methods were proposed recently, in which the coupled nonnegative
matrix factorization (CNMF) was the most famous one [26]. The theoretical foundation of CNMF was
a linear spectral mixing model, and both low spatial resolution HS and high spatial resolution MS
images were iteratively unmixed to eventually extract a high quality of endmembers and abundance
maps. HSS imagery was then produced by endmember spectral of HS image and abundance map
of MS image. Yokoya applied preprocessing and onboard cross-calibration into CNMF and solved
the spectral range mismatch between real data [27]. Bendoumi added sub-image division to the
original CNMF framework and simplified the solving process to get good fusion results [28]. In [29],
spectral adjustment was used after CNMF to generate a simulated MS image and reduce the spectral
distortion during simulation. High frequency information was extracted by a block based fusion phase.
Compared with other fusion procedures, unmixing based methods attempted to approach physical
reality more than mathematic approximation. However, the physical constraints of priori knowledge
were almost neglected in the iterative solution of previous unmixing based methods.

In recent years, the sparsity of the HS images has been gradually regarded and taken advantage
of in the resolution enhancement methods. By implementing an alternating direction method of
multipliers (ADMM), Wycoff [30] transformed the optimization problem of integrating hyperspectral
and visual color images into two Frobenius norm minimization problems utilizing coefficients matrix
sparsity to improve the efficiency. However, the sparsity property of coefficients matrix was not
further considered during the ADMM iterations, and fusion accuracy was not promoted markedly.
In [31], mutual correlations between different HS channels were used to jointly sparse coefficient
vectors, and dictionaries were created for each MS channel. Qi Wei [32] formed regularization
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priors and posteriori optimization to the joint nonnegative matrix factorization (NMF) problem,
and the ADMM algorithm was used to alternately estimate the final abundance maps and endmember
signatures. The authors [33] proposed a Generalization of Simultaneous Orthogonal Matching Pursuit
(G-SOMP+) algorithm to learn a sparse code, and then the HSS image was estimated along with the
spectral reflectance. Huang [34] supposed that there were probably only a few land surface materials
contributing to each pixel in the HS image. The optimal set of atoms was obtained from HS data
through sparse matrix factorization, and the coefficients matrix was calculated from MS data. Since the
two steps were detached, no spatial correlation between HS and MS images was needed, which made
it flexible in practical application, but the HS dataset with a large range was essential to extract
representative atoms as a spectral dictionary. In the non-negative structured sparse representation
(NSSR) method [35], the estimation of the HSS image was formulated as a joint estimation of the
hyperspectral dictionary and the sparse codes were based on the sparsity of the HSS data. However,
the hyperspectral dictionary representing prototype reflectance spectra vectors were only learned
from the input HS image and fixed, not having spatial information of the MS image as a reference
nor updating in the subsequent iterations. Hence, the fusion performance depended a lot on the
initial dictionary generation accuracy. Considering the low spatial resolution of hyperspectral image,
obviously spectrum mixture existed, and a representative dictionary was hard to decompose directly.
Incorporating sparse prior to the NMF model, Chen [36] proposed a sparse constraint nonnegative
matrix factorization (SCNMF) and used the PAN image to sharpen the abundance matrix. By adding
the sparse constraint in the fusion procedure, spectral information was better preserved along with the
increase of computation complexity. The above sparsity promoted algorithms basically all utilized
the global spatial-spectral correlation, and the local sparsity and correlation of objects distribution is
not further mined. In addition, although HS and MS images are geometrically coregistered, subpixel
misregistration still probably exists [37], and a random subpixel shift between the obtained HSS and
MS datasets may also be introduced by the fusion procedures for the sake of the minimization of
global residual. Ref. [38] declared that one of the main objectives of the fusion was that the spatial
characteristic of the synthetic image should be as identical as possible to the image with the highest
resolution. However, the synthetic image does not match the MS image exactly, and a local calibration
is beneficial for dealing with the misregistration.

In this paper, a novel fusion approach based on local adaptive sparse unmixing and subpixel
adaptive morphology calibration is proposed to obtain the HSS image. The main contributions
of the paper are as follows: (1) introducing the local sparsity of abundance matrices as constraint
conditions to the global optimal fusion algorithm of HS and MS images; (2) estimating the authentic
endmembers for each pixel in the optimization procedure on the basis of the occurrence probabilities
in its neighborhood to respect the local correlation of ground object distribution; and (3) proposing
an adaptive morphology based subpixel calibration framework to enhance spatial matching and
preserve the spectral composition simultaneously. The remainder of this paper is organized as follows:
Section 2 elaborates the proposed approach for hyperspectral image resolution enhancement. We focus
on the local adaptive sparse unmixing based fusion approach and the subpixel spatial calibration.
Experiment results are reported in Section 3 using three hyperspectral datasets. Finally, discussions
and conclusions are given in Sections 4 and 5.

2. Materials and Methods

In this section, we first introduce the experimental datasets, and then we elaborate on the proposed
resolution enhancement algorithm.

2.1. Datasets

Three synthetic groups of hyperspectral and multispectral datasets generated from real airborne
HS images have been used to test the proposed technique. To evaluate the effectiveness of the proposed
method, various scenes taken from different types of sensors are selected. The first HS data are taken
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over Salinas Valley, California, USA by the Airborne Visible Infrared Imaging Spectrometer (AVIRIS).
The scene contains 512 × 217 pixels with 224 spectral bands in the wavelength range from 400 nm
to 2500 nm. The second HS data are taken over Washington D.C., USA by the Hyperspectral Digital
Imagery Collection Experiment (HYDICE) sensor. These data are characterized by 210 bands in the
spectral range from 400 nm to 2400 nm and the scene contains 1208 × 307 pixels. The last scene is
collected in the area around Montana, USA by a HyMap instrument provided by Rochester Institute
of Technology (RIT), Henrietta, NY, USA [39]. The 126 spectral channels range from 453.8 nm to
2496.3 nm with a scene of 240 × 240 pixels selected. We select 120 × 120 pixels size of image of the
first data with 204 spectral bands by removing water absorption region: 108–112, 154–167, 224. For the
second dataset, a spatial size of 240 × 240 with 191 spectral channels by omitting atmosphere opaque
region 103–106, 138–148, 207–210 remain. Figure 1 shows the experimental datasets.

Figure 1. Experimental Reference Datasets: (a) hyperspectral image of Salinas; (b) hyperspectral image
of Washington D.C.; (c) hyperspectral image of Montana.

The MS data are generated by spectrally downsampling of the HSS data corresponding to Landsat
TM data, and the six bands cover a spectral range of 450–520, 520–600, 630–690, 760–900, 1550–1750
and 2080–2350 nm, respectively. The HS image is a spatially Gaussian downsampling of the HSS data
with full-width at half maximum to a lower scale by a factor of 6. The downsampling factor is set as 6,
which results in a sixfold difference in spatial resolution between two sensors, adopted and discussed
in [15]. Considering that the spectral characters of synthetic images should be as identical as possible
to the sensor with the highest spectral resolution [38], MS images are radiometrically calibrated to HS
data according to the spectral degradation model and the parameters of the sensors.

2.2. Local Adaptive Sparse Unmixing Based Fusion Approach

To obtain the HSS image XHSS ∈ Rbh×(rm×cm), a spectral signature of HS image YHS ∈ Rbh×(rh×ch)

and spatial features of the MS image YMS ∈ Rbm×(rm×cm) are required. The 3D data cube are rearranged
to a 2D matrix with each row representing all the pixels from a specific band, and each column
representing the spectral signature at each pixel. bh and bm denote the numbers of spectral bands of
HS and MS data, respectively. ch and rh denote the numbers of column and row pixels in HS data,
respectively. cm and rm denote the numbers of column and row pixels in MS data, respectively.

Since the HS and MS images can be respectively considered as spatially and spectrally degraded
versions of the HSS image, the sensor observation models that have been widely cited in [40–42] are
given as:

YHS = XHSSG + ns, (1)

YMS = LXHSS + nr, (2)

where G ∈ R(rm×cm)×(rh×ch) denotes the spatial spread transform matrix, contains elements
representing point spread function from MS to HS images, L ∈ Rbm×bh is the spectral response
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transform matrix that represents the spectral response function from HS to MS images. G and L can be
a priori known according to the sensors parameters, when applying to real data, G is estimated by
Gaussian point spread function, L can be derived by cross calibration [27], and ns and nr are residuals.

A spectral unmixing technique is the decomposition of an image into a collection of constituent
spectra called endmembers E, and a set of corresponding fractions called abundances A, and abundance
maps indicate the proportion of individual endmember present in one pixel. With the advantages in
physical effectiveness and mathematical simplicity, the linear spectral mixture model (LMM) [43] is the
most commonly used model in solving the unmixing problems. It assumes that the spectrum of each
pixel is a linear combination of spectral of several endmembers. Therefore, XHSS can be defined as:

XHSS = EHSAMS + n, (3)

where EHS = [eHS1, eHS2, . . . , eHSd] ∈ Rbh×d is the endmember matrix of HS image, {eHSi}d
i=1 is the

endmember spectrum and d is the total number of endmembers. The multispectral image abundance
map is AMS = [ fMS1, fMS2, . . . , fMS(rm×cm)] ∈ Rd×(rm×cm), { fMSi}

(rm×cm)
i=1 is the endmember abundance

fractions at each pixel and (rm× cm) is the total number of pixels. n represents the noise. By substituting
LMM of XHSS defined by Equation (3) into the sensor observation models defined by Equations (1) and
(2), AHS is the spatially degraded abundance matrix and can be derived as AHS = AMSG, and EMS is
the spectrally degraded endmember matrix and can be derived as EMS = LEHS.

Unmixing based fusion techniques extract the endmembers from both data pairs and optimally
calculate the high spatial resolution abundances accordingly. In previous works, such as CNMF and its
derived methods, each pixel was regarded as the combination of all the endmembers according to LMM.
To minimize the squared Frobenius norm of estimation residual matrices: ‖YHS − EHSAHS‖2

F and
‖YMS − EMSAMS‖2

F, endmembers and abundances were alternately calculated by the multiplicative
update rules. However, the endmember matrix is over completed for most local areas, so the update
procedure may also force the noise ns and nr approximately represented by the linear mixture of the
endmembers to reduce the residual and generate local full rank abundance matrices. Meanwhile,
the endmembers of ground objects with small areas are gradually neglected for global optimization.
The regions may also be fitted by the collinear endmembers as an ill-posed problem [44]. These will all
impair the representation space of the endmembers, the spectral-spatial feature of the reconstructed
HSS image and the convergence efficiency.

To deal with the problems above, a local adaptive sparse unmixing fusion (LASUF) method is
proposed. The proposed algorithm attempts to further preserve the spectral composition characteristics
of HS image and the spatial feature of MS image, by introducing priori geological constraints to the
iterative solution of the coupled unmixing. At first, each pixel in the remote sensing images has
finite cover scope, and thus contains a few categories of ground features. This means that the desired
spectrum of each pixel is supposed to be mixed by a small number of endmembers. Consequently,
the corresponding abundance matrix should be sparse. Secondly, the local correlation of the ground
surface is respected in our procedure. That is, the distribution of ground objects has continuity to some
extent and some category of object is more likely to appear around its congeneric areas. We suppose
the abundance of one pixel indicates the existence probability of the endmembers, but not their exact
composing proportion considering the noise. Thereupon, the abundance matrix can be regarded as a
Markov Random Field, where the probability of the pixel x containing the n th endmember completely
depends on abundance distribution of neighborhood Nx centered on x:

P(Ax(n) > 0|Ar, r 6= x) = P(Ax(n) > 0|Ar, r ∈ Nx), (4)

where P(E1|E2) represents the conditional probability of one event E1 occurring given that E2 is
already known, and Ax(n) is the abundance of nth endmember at the position of x.

The distribution probability of the endmembers can be calculated as P = A⊗W, ⊗ represents
convolution operation, and P ∈ Rd×(r×c) and W ∈ Rw×w are a Gaussian window with width of
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w. Px is a vector in dimension of d× 1 with Px(i) representing the existence probability of the ith
endmember at position x, and its sum is normalized to 1. Then, we construct a binary sparsification
matrix S ∈ Rd×(r×c) utilizing P to make A sparse. Considering that limited kinds of ground objects
exist in one pixel, we suppose x is actually mixed by qx � d endmembers with greater existence
probability, and other components are the approximate expression of noise n in Equations (1) and (2).
The sparsification matrix S is initialized as zero matrix and calculated as:

Sx(i) =

{
1 Px(i) ∈ maxqx (Px) and sum(maxqx (Px)) ≥ 1− ε

0 otherwise
, (5)

where ε is the permissible error of unmixing reconstruction. When the sum of largest qx probabilities is
higher than 1− ε, the corresponding elements in Sx are set to “1” and others remain as “0”. The objective
function of the optimization problem can be formulated as minimization of the global estimation
residual constrained by the priori sparsity:

min 1
2‖YHS − EHSAHS‖2

F +
1
2‖YMS − EMSAMS‖2

F
s.t. qHS � d and qMS � d and EHS, AHS, EMS, AMS ≥ 0

. (6)

The proposed LASUF algorithm is summarized in Algorithm 1. The endmembers and abundance
matrix are initialized using the input HS and MS data by endmember extraction and fully constrained
least squares (FCLS) method [45]. Considering the good robustness of unmixing iteration procedures
to the initial endmember extraction result, which has been discussed in the previous work [32], various
kinds of endmember extraction methods can be used including vertex component analysis (VCA),
N-finder algorithm (N-FINDR), pure pixel index (PPI), etc. In addition, VCA [46] is adopted for
all of the fusion methods for a fair comparison in our experiments, since it is a state-of-the-art
endmember extraction method that does not require the presence of pure pixels in the image.
Then, through introducing the sparse and local correlation constraint to each inter-optimization
iteration of the unmixing procedure, the sparsification matrix of the MS image and HS image are
calculated as:

PHS ← AHS ⊗W, (7)

SHSx (i) =

{
1 PHSx (i) ∈ maxqx (PHSx ) and sum(maxqx (PHSx )) ≥ 1− ε

0 otherwise
, (8)

and
PMS ← AMS ⊗W, (9)

SMSx (i) =

{
1 PMSx (i) ∈ maxqx (PMSx ) and sum(maxqx (PMSx )) ≥ 1− ε

0 otherwise
. (10)

Then, the local adaptive sparse abundance matrix is calculated as:

AS
HS ← AHS. ∗ SHS, (11)

AS
MS ← AMS. ∗ SMS. (12)

Unlike the sparse method in [33–35], endmembers are updated in the iterative optimization
utilizing local sparsity of ground objects distribution along with the spatial correlation between MS
and HS images via Lee and Seung’s multiplicative update rules [47], which are given as:

EHS ← EHS. ∗ (YHS(AS
HS)

T
)./(EHSAS

HS(A
S
HS)

T
), (13)

AHS ← AS
HS. ∗ (ET

HSYHS)./(ET
HSEHSAS

HS), (14)
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EMS ← EMS. ∗ (YMS(AS
MS)

T
)./(EMSAS

MS(A
S
MS)

T
), (15)

AMS ← AS
MS. ∗ (ET

MSYMS)./(ET
MSEMSAS

MS), (16)

where (·)T denotes the transposition of the matrix and ∗ and ./ denote elementwise multiplication
and division, respectively.

In LASUF, we can gradually acquire the local adaptive optimal solution instead of global
optimization. Therefore, the endmembers of small ground objects are harder to ignore, for their
abundances in other areas are set to zero and barely contribute to the overall estimation residual.
The endmembers matrix EHS and EMS become more expressive than the previous unmixing
procedure consequently.

Algorithm 1 Local Adaptive Sparse Unmixing Based Fusion

1: Input: Hyperspectral data YHS and multispectral data YMS, degradation matrix L and G, permissible error ε

2: initialization stage
3: Endmember extraction from YHS to initialize EHS by VCA.
4: Initialize AHS from YHS and initial EHS by using the FCLS method.
5: Initialize EMS from EHS by EMS = LEHS.
6: Initialize AMS from YMS and initial EMS by using the FCLS method.
7: Optimization stage
8: Outer loop for
9: Inter loop1 Sparse optimize LHS (Iteration until convergence)
10: generate the sparsification matrix SHS from AHS by (7) and (8)
11: generate the local adaptive sparse abundance matrix AS

HS for YHS by (11)
12: Optimize EHS using the sparse abundance matrix AS

HS by (13).
13: Optimize AHS by using (14)
14: end
15: Update EMS from EHS by EMS = LEHS.
16: Inter loop2 Sparse optimize HMS (Iteration until convergence)
17: generate the sparsification matrix SMS from AMS by (9) and (10)
18: generate the local adaptive sparse abundance matrix AS

MS for YMS by (12)
19: Optimize EMS using the sparse abundance matrix AS

MS by (15).
20: Optimize AMS by using (16)
21: end
22: Update AHS from AMS by AHS = AMSG
23: end for
24: fusion stage
25: Fuse EHS and AMS by using XHSS = EHSAMS to get HSS.
26: Output: fused high spatial-spectral resolution hyperspectral image XHSS.

2.3. Subpixel Spatial Calibration Phase

The existing fusion approaches, including unmixing based methods, generally expect that
the observed high spatial resolution MS and low spatial resolution HS images are geometrically
coregistered with radiometric correction. That is, each pixel in HS spatially corresponds to
(rm/rh) × (cm/ch) entire pixels in MS exactly, as shown in Figure 2a. Unfortunately, in practical
application, the integer-pixel matching is difficult to achieve due to different sensors, platform,
and atmospheric refraction conditions [48]. On one side, with the development of an unmanaged
autonomous vehicle (UAV) technique, airborne sensors provide a major source of high-resolution
remote sensing images. However, due to airstream and flight control, the airborne platform route
cannot maintain adequate precision like a satellite. Consequently, subpixel misalignment may appear
in some local areas as shown in Figure 2b. On the other side, except for the same multi-sensor platform,
HS and MS images are generally captured in different time phases. Ground objects and atmospheric



Remote Sens. 2018, 10, 592 8 of 21

condition probably change as time goes by, such as movements of man-made cars or boats, evolution
of vegetation, waves or coastlines. This may lead to the accidental subpixel shift as shown in Figure 2c
and the anamorphic misregistration in Figure 2d. Even HS and MS images can be absolutely precisely
calibrated, the fusion processes are likely to introduce some random subpixel shift between HSS and
MS images. The existing fusion procedure attempts to minimize the squared norm of estimation
residual matrices and obtain the global optimization, but ignores the local accuracy at the pixel level.
In addition, fusion methods usually assume that the underlying surface is a plane and a diffuse reflect
incident electromagnetic wave; therefore, it conforms to the Gaussian mixture model. While the
hypothesis may not be entirely accurate, for instance, when there exists slope, specular reflection or
ground features that have obvious absorption of some certain bands, mixed pixels in an HS image are
not simply a Gaussian mixture of pure pixels. The unmixed result also has spatial bias. If these factors
are considered in the unmixing model, the fusion algorithm complexity will be greatly increased.
Considering that the MS image has more accurate and reliable spatial information, we expect to correct
the HSS image on the subpixel level to make it have spatial features in accordance with the MS image
and preserve its spectrum composition characteristics simultaneously. Hence, we design a subpixel
calibration postprocessing to solve the above problem and further improve the fusion accuracy.

Figure 2. Schematic diagram of integer pixel matching and subpixel shift in multispectral and
hyperspectral image registration.

In this section, an optimal matching based adaptive morphology filtering (OM-AMF) using
MS data as the reference is proposed for subpixel spatial calibration of the HSS image. Traditional
mathematical morphology can explore and calibrate specific morphological structure in a gray scale
image utilizing a structuring element (SE) and sorting operator [49]. The erosion result of an image
f (x) with an SE is the minimum value of the pixels in the scope of SE when its origin is at x:

εSE[ f (x)] = min
b∈SE

f (x + b), (17)

where εSE(·) denotes the erosion operator, and b indicates the vectors from x to the pixels in SE.
Equation (17) can be rewritten as an optimization form: εSE[ f (x)] = f (x + b̂)

b̂ = argmin
b∈SE

f (x + b) , (18)

where b̂ represents the position vector from x that minimizes the object function f (·).
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Then, we extend the optimization form of morphology to the condition with reference data to
match. The filtering result of optimal matching (OM) morphology can be defined as the pixel in the SE
with the minimum mean square error (MSE) of the corresponding pixel in the reference image: ψSE[C(xc), R(xr)] = C(xc + b̂)

b̂ = argmin
b∈SE

MSE(C(xc + b), R(xr)) , (19)

where ψSE[C, R] denotes the OM morphology operator of the input data C and the reference data
R, and xc and xr are the corresponding positions in C and R; when C and R are cube data,
MSE(C(xc + b),R(xr)) represents the mean square error of the vectors at xc + b and xr. b̂ represents
the position vector from xc that minimizes the MSE of C(xc + b) and R(xr) in the scope of SE.

We take advantage of the OM morphology and adaptive structuring element (ASE) to adjust the
spatial structure of HSS data in accordance with the MS image. The flowchart is shown in Figure 3.
At first, the subpixels of the HSS image, with the identical spectrum components, are constructed.
We divide each pixel into k× k subpixels in space to get a dense hyperspectral image (DHS, XDHS ∈
Rk2bh×(rm×cm)) as shown in Figure 3b. Then, each pixel in DHS is replaced by the average linear
mixture of its k× k neighborhood to obtain a spatial overcomplete hyperspectral image (SHS, XSHS ∈
Rk2bh×(rm×cm)), as shown in Figure 3c. One pixel in the SHS map contains the same spatial scope as the
pixel in the MS image and is centered at the corresponding position of the subpixel in the DHS image.
Meanwhile, the SHS map can also be linear represented by EHS.

Figure 3. The schematic of subpixel spatial calibration phase.

To preserve the spatial character of MS image, the edge constrained 4-neighbour growth is used to
generate the ASE for an SHS image constraint by the edge of the MS image [50,51]. PCA transformation
is executed on the MS image, and the edge map is detected by implementing a Sobel operator on the
k× k super-resolution of the largest PCA component. Then, ASE is constructed for each pixel of the
SHS image to reveal its homogenous region. Finally, the OM-AMF is executed to update the HSS
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image with the pixel in the ASE scope of SHS data, whose spectrum degeneration has the minimum
MSE with the corresponding pixel in MS image: X′HSS(zh) = ψASE[XSHS(zs), YMS(zh)] = XSHS(zs + b̂)

b̂ = argmin
b∈ASE

MSE(LXSHS(zs + b), YMS(zh))
, (20)

where zh is the position of the pixel to be operated in the HSS image and zs is the corresponding
position in the SHS image; ASE is the adaptive structuring element generated via the edge of the MS
image. For the spectral response transform matrix, L is the same as the fusion procedure and has
been cross calibrated, and the overall radiation consistency of LXSHS and YMS is receivable. Denoising
process should be executed on the MS data firstly to reduce the risk of radiation deviation for the
proposed subpixel calibration.

Most fusion methods, including the proposed LASUF, provide overall or local optimal estimation
from MS and HS images. Due to the low spatial resolution of HS data, they can hardly achieve the
best spatial resolution on the level of high spatial resolution pixels. The better matched results may be
found in the neighbor subpixels. Consequently, the proposed OM-AMF can improve the results of most
fusion procedures even though the MS and HS images are completely matched in spatial dimension.

3. Experimental Results

3.1. Experimental Setup

The proposed LASUF-OM method is applied to the above datasets. To demonstrate the effectiveness
of the proposed method, four representative methods are compared as competitors, including MAP [19],
CNMF [26], Bayesian [22], and NSSR [35]. The parameters of these methods were manually adjusted to
the optimal. In CNMF and LASUF-OM, the maximum number of iterations for inner and outer loops
are set to 200 and 3. The thresholds for the convergence condition are set at 10−6 and their endmembers
are initialized via VCA with the same number at 30 empirically referring to [15]. This number and the
final performance depend on the scene complexity of the images in practical application. Particularly,
for the proposed method, the permissible error of the local adaptive sparse process is set as ε = 0.1;
the maximum radius ASE is 5, while, in MAP, six PCs, four endmembers, and 20 mixture classes
are adopted. The regularization parameter of Bayesian is fixed as 0.0001. The number of atoms in
the dictionary in NSSR is set as 80, and iteration numbers and convergence thresholds are set as
in the reference. The processor Intel (R) Core (TM) i7 CPU 2.40 GHz RAM 12 GB is selected for
all experiments.

In addition, the ideal estimated HSS image should preserve the spectral information of the HS
image and the spatial information of the MS image, and both qualitative and quantitative assessments
are adopted to overall evaluate the performance from those two aspects. Some typical bands and
spectral profiles are presented as visual indices, and the quantitative measurements are evaluated
between the generated HSS data and the original reference image, including the spatial measure of the
peak signal-to-noise ratio (PSNR) index and cross correlation (CC) index, a spectral measure of the
spectral angle mapper (SAM) index and a global measure of the erreur relative globale adimensionnelle
de synthése (ERGAS) index [52]. The definition of PSNR is as follows:

PSNRk = 10 ∗ log10
Max2

krmcm
rm
∑

i=1

cm
∑

j=1
[X̂k

HSS − Xk
HSS]

2
, (21)

where X̂k
HSS denotes a single band of the estimated HSS image, and Xk

HSS denotes a single band of
the reference HSS image. Maxk is the maximum pixel value in the kth band image. The CC index



Remote Sens. 2018, 10, 592 11 of 21

characterizes the geometric distortion between estimated and reference data, the optimal value of CC
is 1, and it is defined as:

CC =
1
bh

bh

∑
k=1

rm
∑

i=1

cm
∑

j=1
(X̂k

HSS − µk
X̂
)(Xk

HSS − µk
X)√

rm
∑

i=1

cm
∑

j=1
(X̂k

HSS − µk
X̂
)

2
(Xk

HSS − µk
X)

2
, (22)

where µ(·) denotes the sample mean. SAM measures the spectral shape preservation by calculating the
distance between two spectral vectors of two pixels, and it is defined as:

SAM = arccos
(
〈x, x̂〉
‖x‖2‖x̂‖2

)
, (23)

where x and x̂ denote the spectral vector of reference and estimated HSS images, respectively. 〈x, x̂〉 =
xT x̂ is the inner product. The lower SAM means the lower spectral distortion and the optimal value is
0. ERGAS evaluates the global quality of the estimated HSS image and is defined as:

ERGAS = 100d

√√√√ 1
bh

bh

∑
k=1

(
RMSEk

µk
X

)2

, (24)

RMSE =
‖X̂HSS − XHSS‖F√

bh × rm × cm
, (25)

where d is the spatial resolution ratio from HSS to HS images, and RMSE is the well-known root mean
square error that computes spatial quality. By calculating each band, the spectral information quality
is considered, and the optimal value is 0.

3.2. Integer Pixel Matched Fusion Experiment

At first, we assume that the MS and HS images are completely matched with no subpixel shift.
The space enhancement ratio in OM-AMF postprocessing is set as k = 3. In Tables 1–3, the average
statistical indexes of the PSNR, SAM, CC, and ERGAS values and the running time of all the tested
methods are given for the three pairs of datasets. Globally, these tables show that the proposed
LASUF-OM algorithm has remarkable results in both spectral and spatial perspectives.

Table 1. Comparison of average statistical indexes of different methods of data Salinas.

Dataset Index PSNR (dB) SAM (rad) CC ERGAS Time (s)

Salinas

MAP 32.9592 0.0187 0.9877 0.9536 6.68
CNMF 35.2277 0.0128 0.9869 0.9197 70.79

Bayesian 35.7891 0.0141 0.9896 0.8319 6.79
NSSR 37.1807 0.0113 0.9871 0.7883 50.81

LASUF 39.4132 0.0095 0.9899 0.7737 18.08
LASUF-OM 40.0492 0.0091 0.9901 0.7639 39.72

PSNR: peak signal-to-noise ratio; SAM: spectral angle mapper; CC: cross correlation; ERGAS: erreur relative globale
adimensionnelle de synthése; MAP: maximum a posteriori; CNMF: coupled nonnegative matrix factorization; NSSR:
non-negative structured sparse representation; LASUF: local adaptive sparse unmixing fusion; LASUF-OM: local
adaptive sparse unmixing fusion and optimal matching.
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Table 2. Comparison of average statistical indexes of different methods of data Washington D.C.

Dataset Index PSNR (dB) SAM (rad) CC ERGAS Time (s)

Washington
D.C.

MAP 38.7546 0.0354 0.9889 1.7922 6.85
CNMF 37.1528 0.0268 0.9858 1.8408 78.38

Bayesian 37.8320 0.0316 0.9875 1.414 7.73
NSSR 38.7432 0.0274 0.9894 1.7245 61.77

LASUF 38.3789 0.0249 0.9923 1.3383 16.77
LASUF-OM 40.8441 0.0226 0.9924 1.3041 38.06

Table 3. Comparison of average statistical indexes of different methods of Montana data.

Dataset Index PSNR (dB) SAM (rad) CC ERGAS Time (s)

Montana

MAP 41.8429 0.0204 0.9935 1.577 14.73
CNMF 43.6353 0.0196 0.9922 1.7007 230.39

Bayesian 43.8688 0.0193 0.9934 1.5844 9.97
NSSR 44.1863 0.0202 0.9917 1.7156 121.25

LASUF 49.0741 0.0145 0.9939 1.4636 72.86
LASUF-OM 49.5409 0.0136 0.9942 1.4323 109.27

3.2.1. From the Spectral Viewpoint

As indicated in Tables 1–3, the proposed LASUF method presents lower overall SAM values.
After the postprocessing of OM-AMF, the SAM values are further reduced. It means that the OM-AMF
is valuable even though no subpixel shift exists, as the fusion methods provide overall or local
optimum estimation and better results may be found in the neighbor subpixels. Figures 4–6 show
the corresponding SAM heat maps, which reveal spatial distribution of the spectral errors for each
pixel. It can be observed that there are many small spots with warm color in the SAM maps of MAP,
which indicate that greater spectral distortion exists in these reconstruction areas. For CNMF, these
warm pixels mean that the spectrum of these small separate areas can hardly be perfectly expressed by
the final endmembers of the iterative unmixing procedures. The average SAM value of Bayesian is
high since the spectral physical property is not considered, and the warm color and block effect of the
SAM map also prove that. Although NSSR has a relatively small average SAM value, the warmer areas
of spatial structure details in the SAM map illustrate that the NSSR method is not suitable for regions
with distinct spectral mixing. Nevertheless, the SAM maps of the LASUF and LASUF-OM are almost
all blue and have barely warm areas. It demonstrates that the local adaptive sparsification can preserve
the spectral composition of isolated ground objects, making use of the local correlation and sparsity
of the ground features in limited areas. Our unmixing update procedure achieves local optimization
adaptively and the impact from nonlocal or non-homogeneous regions for the global optimum are
avoided by the sparse abundance matrix. In addition, in the OM-AMF calibration, the subpixels for
selection are generated strictly according to the rule of LMM; hence, spectral signatures stay unchanged
after subpixel calibration.

Figure 4. SAM maps of the enhanced images for Salinas dataset: (a) MAP; (b) CNMF; (c) Bayesian;
(d) NSSR; (e) LASUF; (f) LASUF-OM.
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Figure 5. SAM maps of the enhanced images for Washington D.C. dataset: (a) MAP; (b) CNMF;
(c) Bayesian; (d) NSSR; (e) LASUF; (f) LASUF-OM.

Figure 6. SAM maps of the enhanced images for Montana dataset: (a) MAP; (b) CNMF; (c) Bayesian;
(d) NSSR; (e) LASUF; (f) LASUF-OM.

3.2.2. From the Spatial Viewpoint

To further analyze the relationship between the spatial fusion quality and the wavelength,
the comparisons of PSNR and CC curves for each band of the HSS data are shown in Figures 7–9,
and the wavelength distributions of the MS data are also marked in the PSNR curves. It can be seen that
fusion results of all the methods are more ideal in the spectrum wavelength range that have overlapping
parts between MS and HS images. Results of the Bayesian estimator have relatively poor sensitivity
compared to other methods, while NSSR has great fusion results. In bands with no corresponding MS
wavelength, the fusion effect of the HSS image falls sharply, and NSSR results in 1100–1400 nm perform
the worst. The proposed method shows better results in the different wavelength regions. It can also
be observed that the CC of our method is closest to the ideal value 1, and the slightest geometric
distortion is introduced by the proposed method. In addition, the superiorities in the non-repetitive
bands are even more obvious, which demonstrates better spectral enhancement capability of the
proposed method. For visual comparison, Figures 10–12 show the grayscale images and their local
details of the reference, low resolution HS images and the resolution enhanced results for MAP, CNMF,
Bayesian, NSSR and the proposed algorithm, with the wavelength of 1541 nm, 1204 nm and 1190 nm,
respectively, for Salinas, Washington D.C. and Montana data. It can be visibly perceived that, for the
non-repetitive wavelength, the fusion results of the proposed LASUF-OM method are the closest to
the reference data by visual inspection. The local details include that the grayscale and shape features
are maintained well in our results.

Figure 7. Comparisons of statistical indexes of individual bands for Salinas: (a) PSNR; (b) CC.



Remote Sens. 2018, 10, 592 14 of 21

Figure 8. Comparisons of individual bands for Washington D.C.: (a) PSNR; (b) CC.

Figure 9. Comparisons of statistical indexes of individual bands for Montana: (a) PSNR; (b) CC.

Figure 10. Details of original and resolution enhanced Salinas HSS images at a wavelength of 1541 nm:
(a) reference; (b) input; (c) MAP; (d) CNMF; (e) Bayesian; (f) NSSR; (g) LASUF; (h) LASUF-OM.
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Figure 11. Details of original and resolution enhanced Washington D.C. HSS images at wavelength
of 1204 nm: (a) reference; (b) input; (c) MAP; (d) CNMF; (e) Bayesian; (f) NSSR; (g) LASUF;
(h) LASUF-OM.

Figure 12. Details of original and resolution enhanced Montana HSS images at wavelength of 1190 nm:
(a) reference; (b) input; (c) MAP; (d) CNMF; (e) Bayesian; (f) NSSR; (g) LASUF; (h) LASUF-OM.

In general, high spectral spatial resolution hyperspectral data obtained by the proposed
LASUF-OM strategy maintains the spectral signature of hyperspectral image and embodies the spatial
features of multispectral images. The global measure ERGAS index also emphasizes this fact.

3.3. Subpixel Shift Experiment

A subpixel shift experiment is designed to further verify the performance of the proposed
OM-AMF based subpixel calibration algorithm. In addition, 1/3× 1/3 and 1/2× 1/2 of the high
spatial resolution pixel shift are manually added into HS Washington D.C. data along the low right
side to discuss the influence of subpixel shift to various fusion methods.
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Statistical indexes of the fusion results on the two shift datasets obtained by MAP, CNMF, Bayesian,
NSSR, LASUF and LASUF-OM with k = 3, k = 6 are given respectively in Tables 4 and 5. The SAM
maps are shown in Figures 13 and 14. Compared with integer pixel matched fusion results in Table 2
and Figure 5, we can observe that, when subpixel shift exists, the fusion performances of each method
become worse. Meanwhile, along with the degree of shifts increasing, results become even worse.
Among the contrasting algorithms, MAP is the most sensitive to spatial alignment, for its fusion quality
decreases the most. It can be seen in SAM maps that the areas with over 0.25 spectral angle amplifies
evidently compared to Figure 5a, and are larger than results of other methods in Figures 13 and 14.
While the results of the proposed LASUF drop slightly and the SAM maps in Figures 13c and 14c
are similar to Figure 5c, which mean local adaptive optimal solution embodied more robustness
than global optimization. Through the subpixel calibration phase, the fusion performances improve
obviously. Comparing Table 2 with Tables 4 and 5, when k = 3, the improvement degree of the shifted
data is superior to that of the completely matched data. In addition, with the decreasing of the subpixel
measure in the OM-AMF, the fusion results are better. The LASUF-OM results of the subpixel shift
experiment are superior to the CNMF results of matched data. In addition, when k = 6, the SAM and
PSNR of LASUF-OM overmatch that of LASUF in Table 2. These all demonstrate that the OM-AMF
based postprocessing could calibrate the subpixel shift effectively.

Table 4. Comparison of average statistical indexes of different methods of Washington D.C. (1/3
Subpixel Shift).

Dataset Index PSNR (dB) SAM (rad) CC ERGAS

Washington
D.C.

MAP 35.4668 0.0664 0.9887 1.9176
CNMF 35.8417 0.0321 0.9838 1.8451

Bayesian 34.8561 0.0598 0.9780 1.7198
NSSR 35.7487 0.0356 0.9865 1.7901

LASUF 37.2507 0.0284 0.9911 1.4886
LASUF-OM, k = 3 38.7873 0.0251 0.9913 1.4139
LASUF-OM, k = 6 39.1114 0.0244 0.9916 1.3879

Table 5. Comparison of average statistical indexes of different methods of Washington D.C. (1/2
Subpixel Shift).

Dataset Index PSNR (dB) SAM (rad) CC ERGAS

Washington
D.C.

MAP 35.1011 0.0694 0.9880 2.0194
CNMF 35.3238 0.0371 0.9737 1.9078

Bayesian 34.7970 0.0607 0.9775 1.7349
NSSR 35.3824 0.0396 0.9845 1.9528

LASUF 36.4405 0.0303 0.9904 1.5454
LASUF-OM, k = 3 38.2911 0.0255 0.9912 1.4283
LASUF-OM, k = 6 38.5723 0.0247 0.9914 1.4028

Figure 13. SAM maps of the enhanced images for Washington D.C. dataset. (1/3 subpixel shift):
(a) MAP; (b) CNMF; (c) Bayesian; (d) NSSR; (e) LASUF; (f) LASUF-OM, k = 3; (g) LASUF-OM, k = 6.
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Figure 14. SAM maps of the enhanced images for Washington D.C. dataset. (1/2 subpixel shift):
(a) MAP; (b) CNMF; (c) Bayesian; (d) NSSR; (e) LASUF; (f) LASUF-OM, k = 3; (g) LASUF-OM, k = 6.

4. Discussion

4.1. Endmembers Collinearlity

To experimentally verify the improvement of the endmembers obtained by our method,
we propose an evaluation index Er ∈ Rd×1 to further quantitatively measure the endmember
collinearity. First, arbitrary endmember ek in matrix E is approximately linearly expressed by other
endmembers in least squares estimator as:

ek =
i∈(1,2...d)

∑
i 6=k

αkiei + rk, (26)

where rk ∈ R1×bh is the residual error using other endmembers to linear express ek. Then, vector Er
representing the discrete degree of each endmember linearly expressed by other endmembers is
calculated as:

Er(k) =
|rk|
|ek|

. (27)

The mean value mean(Er) and minimum value min(Er) of Er are together used to describe the
non-collinearity of the endmembers matrix, the larger those two values are, the more difficult they are to
be linear expressed by other endmembers, and the lower collinearity degree of the endmember matrix.

Experiments are executed on the final endmember matrices of the CNMF method and the
proposed LASUF method to quantitatively compare the endmembers’ expressiveness. The evaluation
indexes are calculated for the three datasets and shown in Table 6. It is evident that endmembers
obtained by the proposed LASUF are much harder to be linearly expressed by the others
than CNMF. The results further illustrate that a local adaptive sparse procedure can improve
endmembers’ expressiveness.

Table 6. Comparison of endmembers’ expressiveness.

Index Mean (Er) Min (Er) Mean (Er) Min (Er)

CNMF LASUF

Salinas 0.0340 0.0131 0.1257 0.0235
Washington D.C. 0.1607 0.0585 0.4397 0.1685

Montana 0.0534 0.0220 0.1800 0.0350

4.2. Computational Efficiency

LASUF can not only improve the fusion performance but also promote the computational
efficiency. The computation burden is huge in CNMF. In per-iteration of the multiplicative update
procedure, plenty of multiply-add operations are executed. Taking the EMS update procedure
as an example, Equation (15) needs 2bm(rmcm)

2d + bmd2(rmcm) + 3bmd multiply-add operations,
and its computation complexity is O(bm(rmcm)

2d). Although in our unmixing algorithm additional
computations, including Equations (9), (10) and (12) are executed to generate sparse abundance matrix
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AS
MS, their computation complexities are all no more than O(d(rmcm)), which are negligible compared

with Equations (15) and (16). With a sparse matrix AS
HS or AS

MS, the actual computation cost of each of
the multiplicative update reduces significantly. Furthermore, the numbers of the inter iterations can
also be reduced by the proposed method. Falling in the local minimum is another one of the crucial
factors, which affects the convergence rate when solving the optimization problem. In our algorithm,
the straightforward sparse operation for the abundance matrix provides an extra opportunity to
escape the local minimum in each iteration. Furthermore, the local adaptive sparsification makes the
abundance of the nonexistent ground objects converge to “0” more efficiently. Hence, the convergence
rate of LASUF is improved and the holistic computing efficiency of the unmixing fusion is increased.

The running time in Tables 1–3 reveal that the computational efficiency of LASUF increases
3–4 times that of CNMF. This is because the computation cost of the multiplicative update
reduces significantly due to the abundance matrix sparse operation in each iteration. In addition,
the sparsification process has much lower computational cost. Although the computation complexity
increases when OM-AMF is executed, the running time of LASUF-OM is still about half of CNMF.

5. Conclusions

In this paper, we propose a novel fusion method for high spatial resolution MS images and
low spatial resolution HS images integration based on local adaptive sparse unmixing and subpixel
calibration. Considering the spectrum composition characteristics and the spatial local correlation of
ground objects distribution in spectral images, the proposed algorithm makes the abundance matrix
sparse according to probability distribution of the endmembers in the neighborhood, thereby achieving
the local optimal unmixing automatically. Then, to correct the subpixel shift between HS and MS
images, an optimal matching adaptive morphology filtering based subpixel calibration algorithm is
proposed. Experimental results show that the resolution enhanced hyperspectral image obtained by
the proposed LASUF-OM method has high spectral and spatial fidelities. The proposed algorithm
is easy for implementation and combinatorial application. The local adaptive sparsification can be
utilized in various kinds of unmixing based fusion to improve their endmembers expressiveness and
the convergence efficiency. The actual computational efficiency of the unmixing processes can also be
distinctly enhanced by the sparse abundance matrices. The OM-AMF procedure can not only calibrate
the original subpixel misregistration and the random shift introduced by fusion, but also preserve the
spectral composition features of HSS images.
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