
entropy

Article

Kernel Mixture Correntropy Conjugate Gradient
Algorithm for Time Series Prediction

Nan Xue 1,2,3, Xiong Luo 1,2,3,∗ , Yang Gao 4, Weiping Wang 1,2,3, Long Wang 1,2,3,
Chao Huang 1,2,3 and Wenbing Zhao 5

1 School of Computer and Communication Engineering, University of Science and Technology Beijing,
Beijing 100083, China

2 Institute of Artificial Intelligence, University of Science and Technology Beijing, Beijing 100083, China
3 Beijing Key Laboratory of Knowledge Engineering for Materials Science, Beijing 100083, China
4 China Information Technology Security Evaluation Center, Beijing 100085, China
5 Department of Electrical Engineering and Computer Science, Cleveland State University,

Cleveland, OH 44115, USA
* Correspondence: xluo@ustb.edu.cn; Tel.: +86-10-6233-2526

Received: 17 June 2019; Accepted: 9 August 2019; Published: 11 August 2019
����������
�������

Abstract: Kernel adaptive filtering (KAF) is an effective nonlinear learning algorithm, which has been
widely used in time series prediction. The traditional KAF is based on the stochastic gradient descent
(SGD) method, which has slow convergence speed and low filtering accuracy. Hence, a kernel conjugate
gradient (KCG) algorithm has been proposed with low computational complexity, while achieving
comparable performance to some KAF algorithms, e.g., the kernel recursive least squares (KRLS).
However, the robust learning performance is unsatisfactory, when using KCG. Meanwhile, correntropy
as a local similarity measure defined in kernel space, can address large outliers in robust signal
processing. On the basis of correntropy, the mixture correntropy is developed, which uses the mixture of
two Gaussian functions as a kernel function to further improve the learning performance. Accordingly,
this article proposes a novel KCG algorithm, named the kernel mixture correntropy conjugate gradient
(KMCCG), with the help of the mixture correntropy criterion (MCC). The proposed algorithm has less
computational complexity and can achieve better performance in non-Gaussian noise environments.
To further control the growing radial basis function (RBF) network in this algorithm, we also use a
simple sparsification criterion based on the angle between elements in the reproducing kernel Hilbert
space (RKHS). The prediction simulation results on a synthetic chaotic time series and a real benchmark
dataset show that the proposed algorithm can achieve better computational performance. In addition,
the proposed algorithm is also successfully applied to the practical tasks of malware prediction in the
field of malware analysis. The results demonstrate that our proposed algorithm not only has a short
training time, but also can achieve high prediction accuracy.

Keywords: kernel adaptive filtering; conjugate gradient; correntropy; sparsification criterion;
malware prediction

1. Introduction

Usually, traditional time series prediction methods mainly include autoregression, Kalman
filtering, and moving average models. These traditional approaches focus on mathematical statistics
and have no capabilities of self-learning, self-organization, and self-adaption. In particular, they
cannot be effectively used for data types of nonlinear and multi-feature dimensions in analyzing
some complex problems. Currently, there are some machine learning methods developed to address
this issue, such as support vector machine (SVM), artificial neural network (ANN), and deep neural

Entropy 2019, 21, 785; doi:10.3390/e21080785 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0002-1929-8447
https://orcid.org/0000-0002-3202-1127
http://dx.doi.org/10.3390/e21080785
http://www.mdpi.com/journal/entropy
https://www.mdpi.com/1099-4300/21/8/785?type=check_update&version=2

Entropy 2019, 21, 785 2 of 19

network (DNN), then some satisfactory results are achieved in dealing with practical applications,
e.g., malware analysis [1,2]. However, there still exists several issues that need to be addressed in
using SVM, ANN, and DNN, such as long training time and difficulty in parameter determination.
Therefore, it has become critical to seek a better machine learning model [3].

The kernel method as an effective nonlinear system modeling technique has been widely used
in the machine learning community [4,5]. Among the available kernel learning methods, the kernel
adaptive filtering (KAF) has become a popular calculation method with good computing performance,
which has been successfully employed in signal processing, time series prediction, and many others.
The main idea of KAF is to map the input data in the original space to the high-dimensional feature
space, that is the reproducing kernel Hilbert space (RKHS) [6]. Then, a linear algorithm in this
high-dimensional feature space can be applied to solve the nonlinear problem in the original space.
The disadvantage of the feature space is that the computational complexity of algorithm increases
exponentially with the dimensionality. However, because the kernel method is implicit, it uses
kernel function calculation to replace the inner product calculation in high-dimensional feature space.
Thus, the issue that the computational complexity increases rapidly with the dimensionality could be
effectively avoided.

With the comprehensive study of nonlinear adaptive filters, more extended KAF algorithms have
been developed in recent years. In this case, some popular KAF algorithms include kernel least mean
squares (KLMS) [7] and kernel recursive least squares (KRLS) [8]. The algorithm KLMS has been widely
used in the field of adaptive signal processing due to its simplicity and efficiency [9]. The algorithm KRLS
is designed by recursively solving the least squares (LS) problem. Compared with KLMS, KRLS achieves
better filtering accuracy and faster convergence speed at the cost of increased computing and storage.
Meanwhile, the conjugate gradient (CG) method is another optimization strategy, and it provides a
tradeoff between convergence rate and computational complexity, which can generate a better optimal
solution than the stochastic gradient descent (SGD) method [10]. Therefore, the method CG has been
successfully applied to KAF, and the kernel conjugate gradient (KCG) algorithm was proposed [11].
The KCG with low computational complexity can achieve the same performance as KRLS.

However, the above algorithms are all deduced and experimented in a Gaussian noise
environment. This assumption may not be accurate, since the system noise does not always
follow the Gaussian distribution in practical applications. Actually, it is accompanied by some
impulse noise with low frequency and large amplitude. The interference of this impulse noise
on the system is not negligible. In this case, the KAF algorithm derived on the basis of Gaussian
noise environment is sensitive to non-Gaussian noise or outliers. As a robust nonlinear similarity
measure in kernel space, correntropy has received more and more attention in the field of machine
learning and signal processing [12]. Correntropy can capture higher-order statistics of errors and
provide significant performance improvement on filtering precision, particularly in non-Gaussian
environments. Therefore, more and more algorithms use correntropy as a cost function to improve
the stability of algorithms in a non-Gaussian noise environment [13,14]. Furthermore, on the basis of
correntropy, the mixture correntropy was proposed [15]. It uses a mixture of two Gaussian functions
as a kernel function to enhance flexibility and improve the performance.

Motivated by the work mentioned above, in order to improve the filtering accuracy, convergence
speed, and robustness against impulse noise at the same time, the mixture correntropy criterion
(MCC) [11] is applied to KCG method. Then, a novel kernel learning algorithm, called kernel mixture
correntropy conjugate gradient (KMCCG), is accordingly proposed in this article. In fact, MCC cannot
be directly applied to the CG method due to its nonconvexity [15]. Therefore, in accordance with the
conjugate function theory, we use the half-quadratic optimization method to transform the mixture
correntropy loss into the mixture correntropy half-quadratic function. Then, the mixture correntropy
can be smoothly applied to the CG method. Finally, according to the kernel technique, the algorithm
KMCCG is proposed for robust online kernel learning. Moreover, in the weight updating, the KAF
embeds a growing memory structure, i.e., a growing radial basis function (RBF) network, which leads to

Entropy 2019, 21, 785 3 of 19

the increase of the memory requirement and computation of KAF. There are many traditional methods
to restrain the growth of the network structure, such as the novelty criterion [16], the correlation
criterion [17], the approximate linear dependence criterion [8], and the surprise criterion [18]. Since
the angle between two elements in the Hilbert space can be expressed by the inner product and the
similarity of elements in Hilbert space can be measured by the angle, here we use a sparsification
criterion based on the angle among elements. The angle criterion used here not only provides geometric
intuition, but also offers a simple structure that can be implemented easily.

With the rapid advancement of Internet technology [19], the issue of network security imposes
huge challenges to the Internet. Specifically, the demand for malware analysis has become increasingly
urgent, and practitioners and researchers have been making progress in the field of malware prediction
and detection [20]. Usually, malware is able to implement intention by calling the existing application
programming interface (API) in the system. Therefore, the API calling time series as a software
behavior is analyzed to achieve malware prediction and detection [21]. Generally speaking, the
obtained API call time series can be used to predict future malicious behavior. Specifically, in this
article, the proposed algorithm KMCCG is also used in the practical application of malware prediction.

The main contributions of this article are summarized as follows. (1) On the basis of mixture
correntropy, a novel robust algorithm KMCCG is proposed through a comprehensive use of the
half-quadratic optimization method, the CG technique, and the kernel trick. KMCCG cannot only
improve the learning accuracy, but also maintain robustness to impulse noise. (2) In view of the issue
that the algorithm KMCCG will produce a growing RBF network, the sparsification criterion based on
the angle is used to control the network structure. (3) For a special time series analysis application in
relation to malware prediction, KMCCG is accordingly used to achieve this task, which verifies that
our proposed algorithm can achieve higher prediction accuracy with less training time.

The rest of this article is organized as follows. In Section 2, the mixture correntropy, the algorithm
KCG, and the sparsification criterion are introduced. In Section 3, the details of our algorithm KMCCG
are presented. In Section 4, the simulation on time series prediction and the experiment on the malware
prediction task are conducted to verify the effectiveness of the our proposed algorithm. The conclusion
is summarized in Section 5.

2. Related Work

2.1. Mixture Correntropy

Correntropy is a local similarity function, which is defined as the generalized correlation in
kernel space. It is closely related to the cross-information potential (CIP) in information theory
learning (ITL) [22]. It shows very promising results in nonlinear non-Gaussian signal processing.
The main property of correntropy is that it provides an effective mechanism to mitigate the influence
of large outliers. Recently, correntropy has been successfully applied in various areas, such as signal
processing [23], machine learning [24–26], adaptive filtering [27–29], and others [30–32].

The correntropy is used to represent the similarity between two random variables X and Y.
Let kσ(·, ·) be a Mercer kernel function with a kernel bandwidth of σ. Let E[·] be the mathematical
expectation. Then, the correntropy can be defined as:

V(X, Y) = E [kσ(X, Y)] . (1)

Generally, the Gaussian kernel is the most widely-used kernel in correntropy, and it is as follows:

kσ(X, Y) = Gσ(e) =
1√
2πσ

exp
(
− e2

2σ2

)
, (2)

where e = X−Y is the error value.

Entropy 2019, 21, 785 4 of 19

Here, a nonlinear mapping ϕ(·) is used by the kernel function to map the input space U to
high-dimensional space F , and it satisfies 〈ϕ(x), ϕ(y)〉 = kσ(X, Y). Then, (1) is rewritten as:

V(X, Y) = E[〈ϕ(X), ϕ(Y)〉]. (3)

Since the joint probability density of data in practical applications is usually unknown, for a finite
sample {xi, yi}N

i=1, the correntropy can be defined as:

V̂(X, Y) =
1
N

N

∑
i=1

kσ(xi − yi). (4)

Generally, the kernel bandwidth is one of the key parameters in correntropy. Usually, a small
kernel bandwidth makes the algorithm more robust to outliers, but it will lead to slow convergence
and poor accuracy. On the other hand, when the kernel bandwidth increases, the robustness will be
significantly reduced in the case of abnormal values. In order to achieve better performance, a new
similarity measure MCC was proposed [11]. It can achieve faster convergence speed and higher
filtering accuracy, while maintaining robustness to outliers. The mixture correntropy uses the mixture
of two Gaussian functions as the kernel function, and its definition is as follows:

M(X, Y) = E[αGσ1(e) + (1− α)Gσ2(e)], (5)

where 0 6 α 6 1 is the mixture coefficient and σ1 and σ2 are the kernel bandwidths of the Gaussian
functions Gσ1(·) and Gσ2(·), respectively. When the mixture coefficient α takes a suitable value,
the performance of MCC can be better than that of the original correntropy criterion, so the mixture
correntropy is a more flexible measure of similarity.

Typically, the empirical mixture correntropy loss can be expressed as L̂(X, Y) or L̂(e), where
X = [x1, x2, · · · , xN]

T, Y = [y1, y2, · · · , yN]
T, and e = [e1, e2, · · · , eN]

T. Then, it is defined as follows:

L̂(X, Y) = 1− M̂(X, Y)

= 1− 1
N

N

∑
i=1

[αGσ1 (ei) + (1− α)Gσ2 (ei)] ,
(6)

where ei = xi − yi.
Here, the Hessian matrix of L̂(e) with respect to e is:

HL̂(e) (e) =

[
∂2 L̂(e)
∂ei∂ej

]
= diag[ζ1, ζ2, · · · , ζN], (7)

where ζi = α
σ2

1−e2
i

Nσ4
1

Gσ1(ei) + (1− α)
σ2

2−e2
i

Nσ4
2

Gσ2(ei). Here, if |ei| 6 σ1 6 σ2, then ζi > 0. For any point that

satisfies ‖e‖∞ 6 σ1 6 σ2, there is HL̂(e) (e) > 0.
It can be seen that the Hessian matrix HL̂(e) of empirical mixture correntropy loss, as a function

of e, is convex when the condition ‖e‖∞ = max
16i6N

|ei| 6 σ1 is satisfied. Therefore, the use of mixture

correntropy as a loss function cannot be directly applied to convex optimization [33].

2.2. Kernel Conjugate Gradient Algorithm

The CG is a specific method between the steepest descent and the Newton methods. It accelerates
the typically slow convergence associated with the steepest descent, while avoiding the information
requirements associated with the evaluation, storage, and inversion of Hessian as required by Newton’s
method [10].

Entropy 2019, 21, 785 5 of 19

Let A ∈ Rn×n be a symmetric positive definite matrix and d1, d2, · · · , dm be a set of non-zero
vectors in Rn. If dT

i Adj = 0 (i 6= j), then we think that d1, d2, · · · , dm are conjugated to each other
about A.

There is an unconstrained optimization problem as follows:

min
x∈Rn

f (x), (8)

where f is a continuous differentiable function on Rn. The nonlinear method CG for solving the
above (8) has the following iterative format:

xk+1 = xk + αk pk,

pk =

{
−gk, k = 1
−gk + βk pk−1, k > 2

(9)

where gk = ∇ f (xk) , pk is the search direction, αk > 0 is the step factor, βk is a certain parameter, and
different βk corresponds to a different CG method. That is, when f (x) is a strictly convex quadratic
function, the search direction p generated by the method (9) is conjugated to the Hessian matrix of
f (x). The process of CG iteration is described in Algorithm 1, where ri is the residual vector, pi is the
search direction, xi is the approximate solution. In addition, αi and βi are the step factors, and the
stopping criterion is that the algorithm achieves convergence.

Algorithm 1 The conjugate gradient (CG) algorithm.
Input:
Given symmetric positive definite matrix A;
Given the vector b;
Given the initial iteration value x;
Initialization:
r0 = b−Ax0; p0 = r0;
repeat

for k = 0, 1, . . . do
if pk = 0 then

return x0;
end else

αk =
rT

k rk
pT

k Apk
;

xk+1 = xk + αk pk;

rk+1 = rk − αkApk;

βk =
rT

k+1rk+1

rT
k rk

;

pk+1 = rk+1 + βk pk;

end
end

until Stopping_Criterion is met.

In order to address the nonlinear problem effectively, the KCG algorithm was proposed for online
application [11]. In an effort to use kernel techniques, the solution vector of the algorithm CG is
represented by a linear combination of input vectors. Then, the convergence speed of the online
algorithm KCG is much faster than that of the algorithm KLMS. Actually, the KCG achieves the same
convergence performance as the KRLS in many cases; however, the computational cost is greatly
reduced [11]. Another attractive feature of KCG is that it does not require the user-defined parameters.
The algorithm KCG is described as Algorithm 2. In this algorithm, G is the Gram matrix, η is the
coefficient vector, κ(·, ·) is the Mercer kernel, M is the size of the dictionary, r0 and r1 are the residual

Entropy 2019, 21, 785 6 of 19

vectors, and e is the error vector. Moreover, α1, α2, and β2 are step sizes; S1 is the residual vector of the
normal equation; v1 and v2 are intermediate vectors; and H stands for the conjugate transpose.

Algorithm 2 The kernel conjugate gradient (KCG) algorithm.
Initialization:
X1 = x1; q1 = κ(x1, x1); q1 =

[√
q1
]
;

G1 = q1; η1 = d1
q1

; e1 = 0; M = 1;
repeat

for k = 2, 3, . . . do

qk = κ(xk, xk);

gk = [κ (XM(:, 1), xk) , . . . , κ (XM(:, M), xk)];

νm = gk(m)√
qkqk−1(m)

; (m = 1, 2, . . . , M)

if max {|νm|} < ν0 then

M = M + 1;

XM = [XM−1, xk] ; qM =
[
qM−1,

√
qk
]
;

GM =

[
GM−1 gT

k
gk qk

]
;

r0 =
[
eM−1, dk − gkηM−1

]H ; v1 = GMr0;

γ0 = 〈v1, r0〉 ; α1 = γ0
〈v1,v1〉

;

r1 = r0 − α1v1; s1 = GMr1;

γ1 = 〈s1, r1〉 ; β2 = γ1
γ0

;

v2 = β2v1 + s1; α2 = γ1
〈v2,v2〉

;

ηM = [ηM−1, 0] + (α1 + α2β2) r0 + α2r1;

eM = (r1 − α2v2)
H;

end
end

until Stopping_Criterion is met.

Since the algorithm KCG is derived from the solution of the least squares problem, good
performance can be maintained in a Gaussian noise environment [11]. However, in the non-Gaussian
case, the performance of KCG may not be satisfactory [11]. Therefore, we used the mixture correntropy
as the loss function and propose the algorithm KMCCG.

2.3. Sparsification Criterion

KAF uses an online approaching strategy, that is each time a new set of data arrives, it is allocated
a storage unit. The linear growth of the network structure leads to an increase in the memory
requirements and calculations of KAF. Since the angle between two elements in the feature space can
be represented by the inner product and the similarity of the elements in the space can be measured by
an angle, then a simple sparsification criterion on the basis of the angle between elements in RKHS is
used to control the network structure [11]. The cosine of the angle between ϕ(x) and ϕ(y) is as follows:

ν(x, y) =
〈ϕ(x), ϕ(y)〉
‖ϕ(x)‖ · ‖ϕ(y)‖ =

κ(y, x)√
κ(x, x)κ(y, y)

. (10)

The algorithm reconstructs the network “dictionary” through the sparsification criterion. If the
current dictionary is D and a new sample (xk, dk) is coming, the procedure of the angle criterion-based
sparsification can be described through the following two steps.

Entropy 2019, 21, 785 7 of 19

First, the parameter v is calculated:

νk = max
16m6M

|ν (xk, x̃m)| ∈ [0, 1]. (11)

Second, if νk is smaller than the predefined threshold ν0, (ϕ (xk) , dk) is added to D, otherwise it is
discarded. Because the parameter ν0 represents the level of similarity between the new element and
those old elements in D, we call it the similarity parameter.

3. The Proposed Algorithm

3.1. Half-Quadratic Optimization of the Mixture Correntropy

For the mixture correntropy loss function (5), since its Hessian matrix is not positive definite,
its global convexity cannot be guaranteed. Therefore, the mixture correntropy loss cannot be directly
applied to the convex optimization problem. Fortunately, the half-quadratic (HQ) optimization method
is an effective method to address the non-convex optimization problem [33], which converts the original
objective function into the half-quadratic objective function. In this article, the HQ optimization method
is used to transform the mixture correntropy loss function, and then, the method CG is employed to
solve the transformation function.

Since the mixture correntropy is the sum of two exponential functions, we let f (x) = exp(−x) be
an exponential function. The conjugate function of f (x) is g(v) = −v ln(−v) + v (v < 0). According
to the theory of the conjugate function, the conjugate function of g(v) is given by:

g∗(u) = sup
v<0
{uv− g(v)} = sup

v<0
{uv + v ln(−v)− v}. (12)

Let f (v) = uv + v ln(−v)− v, where v < 0. Then, f (v) reaches the maximum value exp(−u) at
v = − exp(−u). Therefore, we can get:

g∗(u) = sup
v<0
{uv + v ln(−v)− v} = exp(−u), (13)

where v = − exp(−u).

When u =
e2

k
2σ2 , we can get:

g∗
(

e2
k

2σ2

)
= sup

v<0

{
v

e2
k

2σ2 + v ln(−v)− v

}
= exp

(
−

e2
k

2σ2

)
, (14)

where v = − exp
(
− e2

k
2σ2

)
.

Then, (5) can be written as:

M(X, Y) =
α

N

N

∑
i=1

κσ1 (xi, yi) +
1− α

N

N

∑
i=1

κσ2 (xi, yi)

=
α

N

N

∑
i=1

exp

(
−

e2
i

2σ2
1

)
+

1− α

N

N

∑
i=1

exp

(
−

e2
i

2σ2
2

)

=
α

N
sup
v<0

{
vi

e2
k

2σ2
1
− g(vi)

}
+

1− α

N
sup
v′<0

{
v′i

e2
k

2σ2
2
− g(v′i)

}
.

(15)

Entropy 2019, 21, 785 8 of 19

Because the solution to the mixture correntropy Loss (6) is equivalent to solving the
following problem:

max
v<0

M(X, Y) =
α

N
max
v<0

{
vi

e2
k

2σ2
1
− g(vi)

}
+

1− α

N
max
v′<0

{
v′i

e2
k

2σ2
2
− g(v′i)

}
, (16)

therefore, by solving the sum of the following weighted least squares problems, the equivalent solution
of the mixture correntropy can be obtained.

α

N
min

N

∑
i=1

(
−vi

e2
i

2σ2
1

)
+

1− α

N
min

N

∑
i=1

(
v′i −

e2
i

2σ2
2

)
, (17)

where vi = − exp
(
− e2

i
2σ2

1

)
, v′i = − exp

(
− e2

i
2σ2

2

)
, ei = yi − f (xi).

The Hessian matrix of the weighted least squares problem (17) is as follows:

H(e) = diag

[
−αv1

σ2
1

,−αv2

σ2
1

, . . . ,−αvN

σ2
1

]
+ diag

[
−
(1− α)v′1

σ2
2

,− (1− α)v′2
σ2

2
, . . . ,−

(1− α)v′N
σ2

2

]
, (18)

where vi < 0 and v′i < 0. Hence, we obtain H(e) > 0, and then, (17) is a global convex optimization
problem. Here, when the Hessian matrix is positive definite, it means that the function is a convex
function. Then, the objective function can be optimized by the conjugated gradient method.

3.2. Kernel Mixture Correntropy Conjugate Gradient Algorithm

The core of KAF is to transform the input data into a high-dimensional feature space through
the kernel function. The inner product operation in the feature space is more efficiently calculated
by the kernel technique. Its goal is to get the mapping function f (x) between the input and output.
According to the adaptive filtering theory, we can obtain:

f (xk) =
k

∑
i=1

ηiκ (·, xk) , (19)

where ηi is the expansion coefficient and κ (·, xk) is a kernel function with the center xk.
According to (17), we consider the following kernel-induced weighted least squares problem:

α

N
min

k

∑
i=1

(
− vi

2σ2
1
(di − ηiκ (·, xk))

2

)
+

1− α

N
min

k

∑
i=1

(
−

v′i
2σ2

2
(di − ηiκ (·, xk))

2

)

=
α

N
min

∥∥∥√V
(

dT −G1η
)∥∥∥2

+
1− α

N
min

∥∥∥√V′
(

dT −G2η
)∥∥∥2

,

(20)

where η = [η1, η2, . . . , ηk]
T is the expansion coefficient and G is the Gram matrix, which is defined as:

Gk =


κ (x1, x1) κ (x1, x2) . . . κ (x1, xk)

κ (x2, x1) κ (x2, x2) . . . κ (x2, xk)
...

...
. . .

...
κ (xk, x1) κ (xk, x2) . . . κ (xk, xk)

 . (21)

Entropy 2019, 21, 785 9 of 19

Then, we use the method CG to solve the weighted least squares problem (20). The major work of
the online algorithm KMCCG lies in the update of the Gram matrix GM and the coefficient vector ηM.
The Gram matrix GM can be updated as follows:

GM =

[
GM−1 gT

M
gM qM

]
, (22)

where qM = κ (xM, xM) and gM = [κ (x1, xM) , κ (x2, xM) , . . . , κ (xM−1, xM)]. Because [ηM−1, 0]T is a
good approximation of ηM, only a few iterations (one or two) with this initial vector can achieve
satisfactory performance. We use [ηM−1, 0]T as the initial value of ηM, and the initial residual r0 can be
expressed as follows:

r0 = αVk

(
dT −Gk [ηM−1, 0]T

)
+ (1− α)V′k

(
dT −Gk [ηM−1, 0]T

)
= αVk

([
dT

k−1
dk

]
−
[

Gk−1 gT
k

gk qk

] [
ηk−1

0

])
+ (1− α)V′k

([
dT

k−1
dk

]
−
[

Gk−1 gT
k

gk qk

] [
ηk−1

0

])
= α [ek−1, vk (dk − gkηk−1)]

T + (1− α)
[
ek−1, v′k (dk − gkηk−1)

]T
= α [ek−1, vkek]

T + (1− α)
[
ek−1, v′kek

]T ,

(23)

where Vk =

[
I 0

0T vk

]
, V′k =

[
I 0

0T v′k

]
, vk = 1

σ2 exp
(
− e2

k
2σ2

1

)
, and v′k = 1

σ2 exp
(
− e2

k
2σ2

2

)
. Then,

we can get the KMCCG, as shown in Algorithm 3.
What follows is a working example we provide for this section to show the evolution of values

throughout the whole process. Let x1 = [0, 0, 0, 0, 1.0399], d1 = [1.5700], x2 = [0, 0, 0, 1.0399, 1.5700],
and d2 = [1.3156]. Then, according to Algorithm 3, the evolution of the values is as follows.

When k = 2, q2 = κ (x2, x2) = 0.6595, g2 = κ (x1, x2) = 0.3337, and v1 = 0.3337, then because
max {|v1|} < v0 = 0.8, x2 is added to the dictionary, which means that M = M + 1 = 2 and
X2 = [X1, x2]. The Gram matrix GM can be updated as follows:

G2 =

[
G1 gT

2
g2 q2

]
. (24)

Then, the residual can be obtained as r0 = [0, 0.3991]T and r1 = [−0.1834, 0.1210]T. On the basis
of this, the correlation coefficient η2 can be updated. When the new input arrives, the algorithm will
continuously update the correlation coefficient to make it more suitable for the next input. Finally,
the algorithm will stop when the convergence condition is satisfied, that is it reaches the maximum
number of iterations.

Entropy 2019, 21, 785 10 of 19

Algorithm 3 The kernel mixture correntropy conjugate gradient (KMCCG) algorithm.
Initialization:

X1 = x1; q1 = κ (x1, x1) ; q1 =
[√

q1
]
;

G1 = q1; η1 = d1
q1

; e1 = 0; M = 1;

repeat
for k = 2, 3, . . . do

qk = κ (xk, xk);

gk = [κ (XM(:, 1), xk) , . . . , κ (XM(:, M), xk)];

νm = gk(m)

[
√

qkqk−1(m)]
; (m = 1, 2, . . . , M)

if max {|νm|} < ν0 then

M = M + 1;

XM = [XM−1, xk] ; qM =
[
qM−1,

√
qk
]
;

GM =

[
GM−1 gT

k
gk qk

]
;

ek = dk − gkηk−1;

vk =
1

σ2
1
· exp

(
− e2

k
2σ2

1

)
; v′k =

1
σ2

2
· exp

(
− e2

k
2σ2

2

)
;

r0 = α [ek−1, vkek]
T + (1− α)

[
ek−1, v′kek

]T ; v1 = GMr0;

γ0 = 〈v1, r0〉; α1 = γ0
〈v1,v1〉

;

r1 = r0 − α1v1; s1 = GMr1;

γ1 = 〈s1, r1〉 ; β2 = γ1
γ0

;

v2 = β2v1 + s1; α2 = γ1
〈v2,v2〉

;

ηM = [ηM−1, 0] + (α1 + α2β2) r0 + α2r1;

eM = (r1 − α2v2)
H;

end
end

until Stopping_Criterion is met.

3.3. Computational Time Complexity Analysis

As shown in Table 1, we obtain the computational time complexity of four algorithms KLMS,
KRLS, KCG, and KMCCG, after analyzing the implementation process of those algorithms. In this
table, M is the dictionary size in the algorithm. KLMS is a simple KAF with minimal computational
complexity. KRLS requires (4M2 + 4M) additions, (4M2 + 4M) multiplications, and one division per
iteration, while KCG achieves a convergence speed and filtering accuracy comparable to KRLS [11],
and its computational complexity is relatively small. In addition, compared with KCG, KMCCG
requires two divisions and one multiplication when calculating vk and also requires an addition and a
multiplication to update the residual vector r0. Table 1 shows that in each iteration, KMCCG requires
fewer additions and multiplications than KRLS, but requires four more division operations. Because
the number of instruction cycles required by the division operation is generally 20-times that of the
addition operation and M is usually greater than 100, the computational complexity of KMCCG is
still lower than that of the KRLS algorithm. Moreover, when the input vector does not meet the
sparsification criterion, there is no additional calculation for KMCCG, but there are still (4M2 + 4M)

additions and (4M2 + 4M) multiplications for KRLS. Therefore, KMCCG can achieve higher prediction
accuracy with less computational and storage costs.

Entropy 2019, 21, 785 11 of 19

Table 1. Computational cost for dictionary update. KLMS (kernel least mean squares); KRLS (kernel
recursive least squares); KCG (kernel conjugate gradient); KMCCG (kernel mixture correntropy
conjugate gradient).

Algorithm Additions Multiplications Divisions
KLMS M M 0
KRLS 4M2 + 4M 4M2 + 4M 1
KCG 2M2 + 8M 2M2 + 10M 3

KMCCG 2M2 + 8M+ 1 2M2 + 10M+ 2 5

4. Experimental Results and Discussions

In this section, the experiments on short-term predictions of the Mackey–Glass chaotic time series,
minimum daily temperatures time series, and the real-world malware API call sequence are conducted
to illustrate the performance of our proposed algorithm.

4.1. Mackey–Glass Time Series Prediction

The chaotic time series is one of the fundamental forms of movement in nature and human society.
Generally, the classical Mackey–Glass chaotic time series is generated by the following differential
equation [6]:

dx(t)
dt

= −bx(t) +
ax(t− τ)

1 + x(t− τ)n , (25)

where the parameters are set to a = 0.2, b = 0.1, n = 10, and τ = 30. Moreover, the sampling period is
6 s. This experiment uses the past seven samples u(k) = [x(k), x(k− 1), . . . , x(k− 6)] to predict the
current input d(k) = x(k + 1). Then, we use the dimensions of the matrix to represent the size of the
matrix. Therefore, the size of the training input set is (7× 1000), the size of the training target set is
(1000× 1), the size of the testing input set is (7× 200), and the size of the testing target set is (200× 1).

The algorithm KMCCG was compared with the quantized KLMS (QKLMS) algorithm [34],
the quantized kernel maximum correntropy (QKMC) algorithm [35], and the kernel maximum mixture
correntropy (KMMCC) algorithm [15] in four different noise environments, to verify the performance
of our proposed algorithm. Here, QKLMS is one of the most classical KAF algorithms based on the
mean square error (MSE) criterion, and it achieves good prediction accuracy in the Gaussian noise
environment. QKMC is a KAF algorithm based on correntropy, which can also achieve good prediction
accuracy and maintain robustness. The recently-proposed algorithm KMMCC combined with the
mixture correntropy criterion has been demonstrated to be able to obtain satisfactory prediction
accuracy and robustness. All algorithms were configured with a Gaussian kernel. For a fair comparison,
the optimal parameter setting was conducted to let each algorithm achieve the desirable performance.
Finally, the performance of the algorithm was evaluated by MSE, which is defined here as follows:

MSE = 10 log10

(
1
N

N

∑
i=1

(d(i)− y(i))2

)
, (26)

where N represents the number of predicted values.
Figure 1 shows the learning performance of these algorithms in four noise environments.

Obviously, in all four types of noise environments, the testing MSE of KMCCG was smaller than that
of the stochastic gradient-based filtering algorithms, i.e., QKLMS, QKMC, and KMMCC. Meanwhile,
the convergence speed of KMCCG was obviously faster than that of the other compared algorithms.
This verifies that the CG technique used in KMCCG can achieve a faster convergence speed and
higher learning accuracy. Therefore, the algorithm KMCCG can achieve the best performance in all the
compared algorithms.

Entropy 2019, 21, 785 12 of 19

(a) (b)

(c) (d)

Figure 1. Mackey–Glass time series prediction: learning performance in terms of the testing MSE
(mean square error) for QKLMS (quantized kernel least mean squares), QKMC (quantized kernel
maximum correntropy), KMMCC (kernel maximum mixture correntropy), and KMCCG (kernel mixture
correntropy conjugate gradient) under different noise environments: (a) Gaussian; (b) Bernoulli; (c) sine
wave; (d) uniform.

4.2. Minimum Daily Temperatures Time Series Prediction

In this section, the minimum daily temperatures time series is selected as the dataset to verify the
performance of the proposed algorithm. This dataset describes the minimum daily temperature in
Melbourne, Australia, for 10 years (1981–1990) [36]. The unit is Celsius, and there are 3650 observations.
The data source is the Australian Meteorological Agency.

Here, we use the previous five input samples x(k) = [x(k− 5), x(k− 4), . . . , x(k− 1)]T to predict
the current point d(k) = x(k), where x(k) and d(k) represent the input vector and the corresponding
expected output, respectively. Additionally, the size of the training input set as (5×1000); the size of
the training target set was (1000×1); the size of the test input set was (5×200); and the size of the test
target set was (200×1). Finally, the MSE was also used to evaluate the performance of those algorithms.
Then, our algorithms was compared with QKLMS, QKMC, and KMMCC to verify the computational
performance.

Figure 2 shows the learning curve for these algorithms. Obviously, the testing MSE of KMCCG is
less than that of QKLMS, QKMC, and KMMCC, which demonstrates that the proposed algorithm can
perform better than all three other algorithms.

Entropy 2019, 21, 785 13 of 19

Figure 2. Minimum daily temperatures time series prediction: learning performance in terms of the
testing MSE for QKLMS, QKMC, KMMCC, and KMCCG.

4.3. Malware API Call Sequence Prediction

In this section, We apply the proposed algorithm to the malware API call sequence prediction,
while verifying the effectiveness of our algorithm through the actual time series data. The purpose of
this experiment is to predict what the next API would be, which can be used to determine whether it is
malware or not.

4.3.1. Background

API is the service interface provided by the operating system. Applications call the API when
completing file reading and writing, network access, and other tasks [37]. Meanwhile, malware also
needs to call the API when implementing functions. Hence, it is an effective method to predict and
detect malware behavior by extracting the API call sequence [21].

With the rapid advances in computational intelligence methodology, using machine learning
algorithms to predict malware via the API call sequence can make the malware prediction more
intelligent, and the new malware can be detected in a more timely manner [38]. In this field, SVM,
ANN, and other methods have been applied to malware prediction and detection, and some satisfactory
results are achieved.

In [39], with the help of global features using the Gabor wavelet transform and Gist,
the feed-forward ANN was developed to identify the behavior of malicious data with a good accuracy.
In [40], after abstracting the complex behaviors based on the semantic analysis of dynamic API
sequences, an SVM was proposed to achieve malware detection with good generalization ability.
Furthermore, with the popular use of the deep learning method, some DNN models were also applied
to tackle the issue of malware detection. For instance, in [41], the features were extracted from five
minutes of API call log sequences by using a recurrent neural network, and then, they were input to
the convolutional neural network to achieve deep learning with the purpose of malware detection.

Although some good performances have been achieved by using the above approaches, there still
exist several limitations, such as the long training time and difficulty in parameter determination. Since
mixture correntropy as a new measure of local similarity defined in kernel space can be used to address
large outliers, hence, in order to reduce the training time while maintaining high prediction accuracy
and robustness to abnormal data in the API call sequence, our algorithm KMCCG can be considered to
cope with the malware prediction. Here, it should be noted that although some traditional machine
learning-based malware prediction and detection algorithms may be vulnerable to adversarial methods

Entropy 2019, 21, 785 14 of 19

or tools, such as EvadeML [42] and poisoning attack [43], the algorithm KMCCG may be a better
choice in malware prediction, in consideration of the satisfactory robustness achieved by using mixture
correntropy.

We mainly analyzed the acquired API call sequence and predicted the malicious behavior that
may occur in the future using our proposed kernel learning algorithm. Then, through the combination
of these predicted malicious behaviors with the actual detected malicious behaviors, we will extract
feature vectors and integrate them as the discriminant basis of malware detection. In so doing,
we can determine whether the application belongs to malware or not, through the machine learning
classification model.

4.3.2. Experimental Result

API call information can be extracted by static and dynamic methods. Through the use of the static
method [44], the API list can be extracted from the portable executable (PE) format of the executable
files. Furthermore, with the dynamic method [45], the called API can be observed by running the
executable files.

While creating the dataset, we randomly selected Windows malware samples from the malware
datasets of Dasmalwerk and VirusShare and put the software into the cuckoo sandbox to analyze the
report automatically. In order to avoid related security issues caused by malware propagation and
accidental execution, here we chose to deploy the cuckoo sandbox to the Ubuntu environment. Figure 3
shows a flowchart for building the malware corpus. The specific analysis process of the sample is as
follows: (1) The first step is to launch cuckoo on the Linux platform. (2) Then, we submit the sample to
be analyzed to cuckoo. (3) Cuckoo uploads the sample to the virtual machine and collects the behavior
data. (4) After the analysis is completed, cuckoo will generate an analysis report in its own working
directory. Then, the API sequence is extracted from the report, and Figure 4 shows some API call time
series. Each line in this figure represents a malware API call time series. In the following experiment,
the API call sequence of a certain malware sample is selected as the dataset.

This experiment used the past seven samples to predict the current input. The size of the training
input set was (7× 1000); the size of the training target set was (1000× 1), the size of the testing input
set was (7× 200), and the size of testing target set was (200× 1). Figure 5 is the time series dataset
obtained by replacing the API call sequence with the word frequency for which the API appeared in
the whole dataset. Figure 6 shows the normalized sequence shown in Figure 5.

 ! "## $%&'#()* +,-

.%/0!12 31 4%&5

672#1'

8&129:5

;!<3%0)13725)

=50!/& 0# 045 /57#/0

Figure 3. Flowchart for building a malware corpus.

Figure 4. Malware API (application programming interface) call time series report.

Entropy 2019, 21, 785 15 of 19

Figure 5. Original malware API call time series.

Figure 6. Normalized malware API call time series.

In this experiment, the performance of the algorithm is verified by comparing the prediction
accuracy of QKLMS, KMMCC, ANN, SVM, and KMCCG. Considering that the prediction error is
an effective evaluation metric, we still adopted the transformed error (26) to evaluate the algorithm
performance. Figure 7 shows the learning performance of all five algorithms, which represents the
relationship between the testing MSE of the algorithm and the number of iterations. Obviously,
the MSE of KMCCG is smaller than that of the classical KAF algorithms, i.e., QKLMS and KMMCC.
The total training time and the average value of MSE for five runs of the experiment are summarized in
Table 2. It can be found that the proposed algorithm can achieve a prediction accuracy equivalent to the
popular ANN and SVM, but spent less training time. Here, the algorithm KMCCG can be successfully
applied to predict malware API call sequences, which verifies the satisfactory performance of our
proposed algorithm.

Then, the time series of malware API calls were combined with Gaussian noise to further verify
the robustness of the algorithm. In the real world, noise is often not caused by a single source, but a
combination of many different sources. As the number of noise sources increases, it tends to a Gaussian
distribution. Here, Gaussian noise is considered in the experiment to analyze the impact of noise in

Entropy 2019, 21, 785 16 of 19

the system. Figure 8 shows the performance comparison of the proposed algorithm with the other
four algorithms in the Gaussian noise environment. The evaluation metric is also the MSE shown in
(26). It can be seen that the algorithm KMCCG can achieve higher prediction accuracy and be more
stable in the noise environment. This shows that KMCCG has satisfactory robustness.

Figure 7. Testing MSEs of QKLMS, KMMCC, ANN (artificial neural network), SVM (support vector
machine), and KMCCG for malware API call time series prediction.

Table 2. Computational results of QKLMS, KMMCC, ANN, SVM, and KMCCG in API call time series
prediction.

Algorithm Time (s) MSE (dB)
QKLMS 39.03 −12.9139
KMMCC 52.46 −15.4081

ANN 841.41 −18.1565
SVM 106.21 −17.8825

KMCCG 2.24 −17.8421

0 200 400 600 800 1000

Iteration

-14

-12

-10

-8

-6

-4

-2

0

M
ea

n
S

qu
ar

e
E

rr
or

 (
dB

)

QKLMS
KMMCC
ANN
SVM
KMCCG

Figure 8. Testing MSEs of QKLMS, KMMCC, ANN, SVM, and KMCCG for malware API call time
series prediction in the noise environment.

Entropy 2019, 21, 785 17 of 19

5. Conclusions

Through the combination of the MCC and the algorithm KCG, a novel kernel learning algorithm,
i.e., KMCCG, is proposed in this article. Specifically, in an effort to curb effectively the growing RBF
network in our algorithm KMCCG, a sparsification criterion based on the angle between elements
in RKHS is used to control the increase of data size in online applications, which is equivalent to
the coherence criterion. The proposed algorithm achieves much faster convergence speed than the
algorithm KLMS and lower computational complexity than the algorithm KRLS. The prediction results
for Mackey–Glass chaotic time series and Lorentz time series showed that our algorithm achieved good
performance in robustness, filtering accuracy, and computational efficiency. Furthermore, the proposed
kernel learning algorithm was applied to malware prediction. The results also showed that the
algorithm KMCCG not only had a short training time, but also maintained a high prediction accuracy,
which further verified the satisfactory performance of KMCCG.

As a use case of our algorithm, this article only focused on the task of malware API call sequence
prediction. Actually, the prediction experiment of malware API call time series is only a part of
the malware detection technology, and the software cannot be directly classified as malware or a
benign one by only using our method. In future work, we will combine the results of future behavior
prediction with the actual detected malicious behavior as the basis of classification reference and judge
whether the application belongs to malware or not. Moreover, to further extend the applications of
malware prediction and detection while using the algorithm KMCCG, we will discuss some other
classification tasks for malware through the evaluation of false positives.

Author Contributions: In this article, X.L. and Y.G. provided the original ideas and were responsible for revising
the whole article; N.X. designed and performed the experiments and wrote the original article; W.W., L.W., C.H.,
and W.Z. analyzed the data. All authors read and approved the final manuscript.

Funding: This research is funded by the National Natural Science Foundation of China under Grants U1836106
and U1736117, the National Key Research and Development Program of China under Grant 2018YFC0808306,
and the USTB–NTUT Joint Research Program under Grant TW201705.

Acknowledgments: The authors would like to thank the Editorial board and reviewers for the improvement of
this article.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Firdausi, I.; Lim, C.; Erwin, A.; Nugroho, A.S. Analysis of machine learning techniques used in behavior-based
malware detection. In Proceedings of the Second International Conference on Advances in Computing,
Control, and Telecommunication Technologies, Jakarta, Indonesia, 2–3 December 2010; pp. 201–203.

2. Xiao, X.; Zhang, S.; Mercaldo, F.; Hu, G.; Sangaiah, A.K. Android malware detection based on system call
sequences and LSTM. Multimed. Tools Appl. 2019, 78, 3979–3999. [CrossRef]

3. Luo, X.; Jiang, C.; Wang, W.; Xu, Y.; Wang, J.H.; Zhao, W. User behavior prediction in social networks using
weighted extreme learning machine with distribution optimization. Future Gener. Comput. Syst. 2019, 93,
1023–1035. [CrossRef]

4. Han, M.; Zhang, S.; Xu, M.; Qiu, T.; Wang, N. Multivariate chaotic time series online prediction based on
improved kernel recursive least squares algorithm. IEEE Trans. Cybern. 2019, 49, 1160–1172. [CrossRef]

5. Sahoo, D.; Hoi, S.C.H.; Li, B. Large scale online multiple kernel regression with application to time-series
prediction. ACM Trans. Knowl. Discov. Data 2019, 13, 9. [CrossRef]

6. Liu, W.; Príncipe, J.C.; Haykin, S. Kernel Adaptive Filtering; Wiley: Hoboken, NJ, USA, 2011.
7. Liu, W.; Pokharel, P.P.; Príncipe, J.C. The kernel least-mean-square algorithm. IEEE Trans. Signal Process. 2008,

56, 543–554. [CrossRef]
8. Engel, Y.; Mannor, S.; Meir, R. The kernel recursive least-squares algorithm. IEEE Trans. Signal Process. 2004,

52, 2275–2285. [CrossRef]
9. Luo, X.; Deng, J.; Liu, J.; Wang, W.; Ban, X.; Wang, J.H. A quantized kernel least mean square scheme with

entropy-guided learning for intelligent data analysis. China Commun. 2017, 14, 127–136. [CrossRef]

http://dx.doi.org/10.1007/s11042-017-5104-0
http://dx.doi.org/10.1016/j.future.2018.04.085
http://dx.doi.org/10.1109/TCYB.2018.2789686
http://dx.doi.org/10.1145/3299875
http://dx.doi.org/10.1109/TSP.2007.907881
http://dx.doi.org/10.1109/TSP.2004.830985
http://dx.doi.org/10.1109/CC.2017.8010964

Entropy 2019, 21, 785 18 of 19

10. Ahmad, N.A. A globally convergent stochastic pairwise conjugate gradient-based algorithm for adaptive
filtering. IEEE Signal Process. Lett. 2008, 15, 914–917. [CrossRef]

11. Zhang, M.; Wang, X.; Chen, X.; Zhang, A. The kernel conjugate gradient algorithms. IEEE Trans. Signal Process.
2018, 66, 4377–4387. [CrossRef]

12. Gunduz, A.; Príncipe, J.C. Correntropy as a novel measure for nonlinearity tests. Signal Process. 2009, 89,
14–23. [CrossRef]

13. Chen, M.; Li, Y.; Luo, X.; Wang, W.; Wang, L.; Zhao, W. A novel human activity recognition scheme for smart
health using multilayer extreme learning machine. IEEE Internet Things J. 2019, 6, 1410–1418. [CrossRef]

14. Sun, J.; Wang, Z.; Luo, X.; Shi, P.; Wang, W.; Wang, L.; Wang, J.H.; Zhao, W. A parallel recommender system
using a collaborative filtering algorithm with correntropy for social networks. IEEE Trans. Netw. Sci. Eng.
2018. [CrossRef]

15. Chen, B.; Wang, X.; Lu, N.; Wang, S.; Cao, J.; Qin, J. Mixture correntropy for robust learning. Pattern Recogn.
2018, 79, 318–327. [CrossRef]

16. Fan, H.; Song, Q. A linear recurrent kernel online learning algorithm with sparse updates. Neural Netw. 2014,
50, 142–153. [CrossRef]

17. Platt, J. A Resource-allocating Network for Function Interpolation; MIT Press: Cambridge, MA, USA, 1991.
18. Liu, W.; Park, I.; Príncipe, J.C. An information theoretic approach of designing sparse kernel adaptive filters.

IEEE Trans. Neural Netw. 2009, 20, 1950–1961. [CrossRef]
19. Teng, H.; Liu, Y.; Liu, A.; Xiong, N.N.; Cai, Z.; Wang, T.; Liu, X. A novel code data dissemination scheme

for Internet of Things through mobile vehicle of smart cities. Future Gener. Comput. Syst. 2019, 94, 351–367.
[CrossRef]

20. Rhode, M.; Burnap, P.; Jones, K. Early-stage malware prediction using recurrent neural networks.
Comput. Secur. 2018, 77, 578–594. [CrossRef]

21. Onwuzurike, L.; Mariconti, E.; Andriotis, P.; De Cristofaro, E.; Ross, G.; Stringhini, G. Mamadroid: Detecting
android malware by building Markov chains of behavioral models. ACM Trans. Priv. Secur. 2019, 22, 14.
[CrossRef]

22. Príncipe, J.C. Information Theoretic Learning: Renyi’s Entropy and Kernel Perspectives; Springer: New York, NY,
USA, 2010.

23. Zhang, J.F.; Qiu, T.S. A robust correntropy based subspace tracking algorithm in impulsive noise environments.
Digital Signal Process. Rev. J. 2017, 62, 168–175. [CrossRef]

24. Luo, X.; Xu, Y.; Wang, W.; Yuan, M.; Ban, X.; Zhu, Y.; Zhao, W. Towards enhancing stacked extreme learning
machine with sparse autoencoder by correntropy. J. Franklin Inst. 2018, 355, 1945–1966. [CrossRef]

25. Du, B.; Tang, X.; Wang, Z.; Zhang, L.; Tao, D. Robust graph-based semisupervised learning for noisy labeled
data via maximum correntropy criterion. IEEE Trans. Cybern. 2019, 49, 1440–1453. [CrossRef]

26. Luo, X.; Sun, J.; Wang, L.; Wang, W.; Zhao, W.; Wu, J.; Wang, J.H.; Zhang, Z. Short-term wind speed forecasting
via stacked extreme learning machine with generalized correntropy. IEEE Trans. Ind. Inf. 2018, 14, 4963-4971.
[CrossRef]

27. Chen, B.; Xing, L.; Liang, J.; Zheng, N.; Príncipe, J.C. Steady-state mean-square error analysis for adaptive
filtering under the maximum correntropy criterion. IEEE Signal Process. Lett. 2014, 21, 880–884.

28. Wu, Z.Z.; Peng, S.Y.; Chen, B.D.; Zhao, H.Q. Robust Hammerstein adaptive filtering under maximum
correntropy criterion. Entropy 2015, 17, 7149–7166. [CrossRef]

29. Peng, S.; Chen, B.; Sun, L.; Ser, W.; Lin, Z. Constrained maximum correntropy adaptive filtering. Signal Process.
2017, 140, 116–126. [CrossRef]

30. Lu, L.; Zhao, H. Active impulsive noise control using maximum correntropy with adaptive kernel size.
Mech. Syst. Signal Process. 2017, 87, 180–191. [CrossRef]

31. Zhang, Z.Y.; Qiu, J.Z.; Ma, W.T. Adaptive extended Kalman filter with correntropy loss for robust power
system state estimation. Entropy 2019, 21, 293. [CrossRef]

32. He, Y.; Wang, F.; Wang, S.; Cao, J.; Chen, B. Maximum correntropy adaptation approach for robust compressive
sensing reconstruction. Inf. Sci. 2019, 480, 381–402. [CrossRef]

33. Boyd, S.; Vandenberghe, L. Convex Optimization; Cambridge University Press: Cambridge, UK, 2004.
34. Chen, B.; Zhao, S.; Zhu, P.; Príncipe, J.C. Quantized kernel least mean square algorithm. IEEE Trans. Neural

Netw. Learn. Sys. 2012, 23, 22–32. [CrossRef]

http://dx.doi.org/10.1109/LSP.2008.2005437
http://dx.doi.org/10.1109/TSP.2018.2853109
http://dx.doi.org/10.1016/j.sigpro.2008.07.005
http://dx.doi.org/10.1109/JIOT.2018.2856241
http://dx.doi.org/10.1109/TNSE.2018.2862948
http://dx.doi.org/10.1016/j.patcog.2018.02.010
http://dx.doi.org/10.1016/j.neunet.2013.11.011
http://dx.doi.org/10.1109/TNET.2012.2187923
http://dx.doi.org/10.1016/j.future.2018.11.039
http://dx.doi.org/10.1016/j.cose.2018.05.010
http://dx.doi.org/10.1145/3313391
http://dx.doi.org/10.1016/j.dsp.2016.11.011
http://dx.doi.org/10.1016/j.jfranklin.2017.08.014
http://dx.doi.org/10.1109/TCYB.2018.2804326
http://dx.doi.org/10.1109/TII.2018.2854549
http://dx.doi.org/10.3390/e17107149
http://dx.doi.org/10.1016/j.sigpro.2017.05.009
http://dx.doi.org/10.1016/j.ymssp.2016.10.020
http://dx.doi.org/10.3390/e21030293
http://dx.doi.org/10.1016/j.ins.2018.12.039
http://dx.doi.org/10.1109/TNNLS.2011.2178446

Entropy 2019, 21, 785 19 of 19

35. Wang, S.; Zheng, Y.; Duan, S.; Wang, L.; Tan, H. Quantized kernel maximum correntropy and its mean square
convergence analysis. Digital Signal Process. Rev. J. 2017, 63, 164–176. [CrossRef]

36. Gil-Alana, L. Long memory behaviour in the daily maximum and minimum temperatures in Melbourne,
Australia. Meteorol. Appl. 2004, 11, 319–328. [CrossRef]

37. FireEye Inc. Out of Pocket: A Comprehensive Mobile Threat Assessment of 7 Million iOS and Android Apps.
Available online: https://www.itsecurity-xpert.com/whitepapers/1043-out-of-pocket-a-comprehensive-
mobile-threat-assessment-of-7-million-ios-and-android-apps (accessed on 10 July 2019).

38. Ma, Z.; Ge, H.; Liu, Y.; Zhao, M.; Ma, J. A combination method for android malware detection based on
control flow graphs and machine learning algorithms. IEEE Access 2019, 7, 21235–21245. [CrossRef]

39. Makandar, A.; Patrot, A. Malware analysis and classification using artificial neural network. In Proceedings
of the International Conference on Trends in Automation, Communication and Computing Technologies,
Bangalore, India, 21–22 December 2015; p. 7492653.

40. Miao, Q.; Liu, J.; Cao, Y.; Song, J. Malware detection using bilayer behavior abstraction and improved
one-class support vector machines. Int. J. Inf. Secur. 2016, 15, 361–379. [CrossRef]

41. Tobiyama, S.; Yamaguchi, Y.; Shimada, H.; Ikuse, T.; Yagi, T. Malware detection with deep neural network
using process behavior. In Proceedings of the IEEE 40th Annual Computer Software and Applications
Conference Workshops, Atlanta, GA, USA, 10–14 June 2016; pp. 577–582.

42. Xu, W.; Qi, Y.; Evans, D. Automatically evading classifiers. In Proceedings of the Network and Distributed
Systems Symposium, San Diego, CA, USA, 21–24 February 2016; pp. 21–24.

43. Biggio, B.; Nelson, B.; Laskov, P. Poisoning attacks against support vector machines. In Proceedings of the
29th International Coference on Machine Learning, Edinburgh, Scotland, 26 June–1 July 2012; pp. 1467–1474.

44. Sami, A.; Yadegari, B.; Rahimi, H.; Peiravian, N.; Hashemi, S.; Hamze, A. Malware detection based on mining
API calls. In Proceedings of the ACM Symposium on Applied Computing, Sierre, Switzerland, 22–26 March
2010; pp. 1020–1025.

45. Qiao, Y.; Yang, Y.; Ji, L.; He, J. Analyzing malware by abstracting the frequent itemsets in API call sequences.
In Proceedings of the 12th IEEE International Conference on Trust, Security and Privacy in Computing and
Communications, Melbourne, VIC, Australia, 16–18 July 2013; pp. 265–270.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.dsp.2017.01.010
http://dx.doi.org/10.1017/S1350482704001422
https://www.itsecurity-xpert.com/whitepapers/1043-out-of-pocket-a-comprehensive-mobile-threat-assessment-of-7-million-ios-and-android-apps
https://www.itsecurity-xpert.com/whitepapers/1043-out-of-pocket-a-comprehensive-mobile-threat-assessment-of-7-million-ios-and-android-apps
http://dx.doi.org/10.1109/ACCESS.2019.2896003
http://dx.doi.org/10.1007/s10207-015-0297-6
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Mixture Correntropy
	Kernel Conjugate Gradient Algorithm
	Sparsification Criterion

	The Proposed Algorithm
	Half-Quadratic Optimization of the Mixture Correntropy
	Kernel Mixture Correntropy Conjugate Gradient Algorithm
	Computational Time Complexity Analysis

	Experimental Results and Discussions
	Mackey–Glass Time Series Prediction
	Minimum Daily Temperatures Time Series Prediction
	Malware API Call Sequence Prediction
	Background
	Experimental Result

	Conclusions
	References

