Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = local Avrami exponent

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 6209 KiB  
Article
Non-Isothermal Crystallization Behavior of a Zr-Based Amorphous Alloy Composite Prepared by Selective Laser Melting
by Qi An, Rui Li, Yalin Hu, Yun Luo, Anhui Cai, Yixian Li, Hong Mao and Sheng Li
Materials 2025, 18(7), 1631; https://doi.org/10.3390/ma18071631 - 3 Apr 2025
Viewed by 366
Abstract
Zr48Cu47.5Al4Co0.5 bulk amorphous alloy composites were prepared by selective laser melting (SLM) technology under different processing conditions and their non-isothermal crystallization behaviors were systematically investigated. The results show that the crystallization phases are Cu10Zr [...] Read more.
Zr48Cu47.5Al4Co0.5 bulk amorphous alloy composites were prepared by selective laser melting (SLM) technology under different processing conditions and their non-isothermal crystallization behaviors were systematically investigated. The results show that the crystallization phases are Cu10Zr7 and CuZr2 for both gas-atomized powder and SLMed samples. The dependence of volume fraction of Cu10Zr7 and CuZr2 on laser energy density can be fitted by an exponential function. The crystalline sizes of Cu10Zr7 and CuZr2 linearly increase with increasing energy density. The thermal stability is larger for the gas-atomized powders than for the SLMed bulk samples. It is interestingly found that there is an exponential relationship between the crystallization enthalpy ΔHx and the amorphous content. In addition, the glass transition is more difficult for the gas-atomized powders than for the SLMed bulk samples. The crystallization procedure is more difficult for the SLMed bulk samples than for the gas-atomized powders. The local activation energy Eα decreases with increasing α for the gas-atomized powder and the SLMed bulk samples. In addition, the Eα is larger for the SLMed bulk samples than for the gas-atomized powder at the corresponding crystallization fraction α. The dependence of the local Avrami exponent n(α) on the α is similar for both the gas-atomized powders and the SLMed bulk samples at studied heating rates. The crystallization mechanism is also discussed. Full article
Show Figures

Figure 1

16 pages, 3464 KiB  
Article
Tuning Non-Isothermal Crystallization Kinetics between Fe20Co20Ni20Cr20(P0.45B0.2C0.35)20 High-Entropy Metallic Glass and the Predecessor Fe75Cr5P9B4C7 Metallic Glass
by Tao Xu, Jiansheng Yao, Longchao Zhuo and Ziqi Jie
Metals 2023, 13(9), 1624; https://doi.org/10.3390/met13091624 - 20 Sep 2023
Cited by 7 | Viewed by 1255
Abstract
In the present work, comparisons of non-isothermal crystallization kinetics between Fe20Co20Ni20Cr20(P0.45B0.2C0.35)20 high-entropy metallic glass (HEMG) and the predecessor Fe75Cr5P9B4C7 [...] Read more.
In the present work, comparisons of non-isothermal crystallization kinetics between Fe20Co20Ni20Cr20(P0.45B0.2C0.35)20 high-entropy metallic glass (HEMG) and the predecessor Fe75Cr5P9B4C7 metallic glass (MG) were performed with X-ray diffraction and differential scanning calorimetry approaches. The HEMG possesses a harsher crystallization process compared with the predecessor MG, deriving from a higher triggering energy for all the characteristic transitions and local activation energy along with a smaller local Avrami exponent and a growth with pre-existing nuclei. Meanwhile, the glass transition is the easiest process, but the nucleation of the second crystallization case is the hardest transition for the HEMG. However, the predecessor MG possesses distinctly different crystallization features of a moderate difficulty for the glass transition, the harshest process for the growth transition of the second crystallization case, and a crystallization of growth with a diverse nucleation rate. These results conclusively prove that the non-isothermal crystallization kinetics can be significantly changed after the present high-entropy alloying with the substitution of similar solvent elements Co, Ni, and Cr with Fe in Fe75Cr5P9B4C7 MG. Moreover, the two alloys possess a strong glassy formation melt with high thermal stability and diverse crystallized products after non-isothermal crystallization. Full article
(This article belongs to the Special Issue Feature Papers in Entropic Alloys and Meta-Metals)
Show Figures

Figure 1

14 pages, 6977 KiB  
Article
Kinetics of Austenite Decomposition in 54SiCr6 Steel during Continuous Slow Cooling Conditions
by Aleksandr Gokhman, Petr Motyčka, Pavel Salvetr, Zbyšek Nový, Jakub Kotous, Arkadii Briukhanov and Ján Džugan
Materials 2023, 16(13), 4619; https://doi.org/10.3390/ma16134619 - 27 Jun 2023
Cited by 2 | Viewed by 1524
Abstract
In this study, dilatometry and metallography were used to investigate the effect of silicon and copper alloying on the decomposition kinetics of 54SiCr6 steel during continuous slow cooling. It is different from the published literature for using the approach of the local activation [...] Read more.
In this study, dilatometry and metallography were used to investigate the effect of silicon and copper alloying on the decomposition kinetics of 54SiCr6 steel during continuous slow cooling. It is different from the published literature for using the approach of the local activation energy of the austenite decomposition Ef and the local Avrami exponent n of the volume fraction of the transformed phase f to study the kinetics of austenite-pearlitic transformation in cooled 54SiCr steel at slow cooling rates. The Johnson–Mehl–Avrami equation was used to determine the dependence of the local activation energy for austenite decomposition Ef and the local Avrami exponent n on the volume fraction of the transformed phase f. The mechanism of the austenite decomposition was analysed based on the calculated values of n. Both the local and average activation energies were used to evaluate the alloying effect, and the results were compared with those obtained from other methods. The type of microstructure formed as a result of cooling at rates of 0.5 K/s, 0.3 K/s, 0.1 K/s and 0.05 K/s was determined. The effects of changes in the cooling rate and the content of silicon (1.5–2.5 wt.%) and copper (0.12–1.47 wt.%) on the dimension of nucleation and growth kinetics of the transformed phase were studied. It was revealed that the pearlite microstructure was formed predominantly in 54SiCr6 steel as a result of continuous cooling at slow cooling rates. It was also found that alloying this steel with copper led to a significant decrease in the value of Ef, as well as to a change in the mechanism of the kinetics of the austenite-pearlite transformation, which was realised in predominantly two- and three-dimensional nucleation and growth at a constant nucleation rate. At the same time, alloying this steel with silicon led only to a slight change in Ef. The results of the study of 54SiCr steel presented the dependence of the activation energy of transformation and the local Avrami exponent on the volume fraction of the transformed phase at a given cooling rate at different copper and silicon contents. In addition, the study provides insight into the mechanism of kinetics in cooled 54SiCr steel as a function of the cooling rate. Full article
Show Figures

Figure 1

20 pages, 9932 KiB  
Article
Analysis of the Crystallization Kinetics and Thermal Stability of the Amorphous Mg72Zn24Ca4 Alloy
by Bartosz Opitek, Janusz Lelito, Michał Szucki, Grzegorz Piwowarski, Łukasz Gondek and Łukasz Rogal
Materials 2021, 14(13), 3583; https://doi.org/10.3390/ma14133583 - 26 Jun 2021
Cited by 10 | Viewed by 2303
Abstract
The aim of this study was to analyze the crystallization of the Mg72Zn24Ca4 metallic glass alloy. The crystallization process of metallic glass Mg72Zn24Ca4 was investigated by means of the differential scanning calorimetry. The [...] Read more.
The aim of this study was to analyze the crystallization of the Mg72Zn24Ca4 metallic glass alloy. The crystallization process of metallic glass Mg72Zn24Ca4 was investigated by means of the differential scanning calorimetry. The glass-forming ability and crystallization are both strongly dependent on the heating rate. The crystallization kinetics, during the isothermal annealing, were modelled by the Johnson–Mehl–Avrami equation. Avrami exponents were from 2.7 to 3.51, which indicates diffusion-controlled grain growth. Local exponents of the Johnson–Mehl–Avrami equation were also calculated. In addition, the Mg phase—being the isothermal crystallization product—was found, and the diagram of the time–temperature phase transformation was developed. This diagram enables the reading of the start and end times of the crystallization process, occurring in amorphous ribbons of the Mg72Zn24Ca4 alloy on the isothermal annealing temperature. The research showed high stability of the amorphous structure of Mg72Zn24Ca4 alloy at human body temperature. Full article
Show Figures

Graphical abstract

Back to TopTop