Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = living myocardial slices

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4004 KiB  
Article
Viability and Longevity of Human Miniaturized Living Myocardial Slices
by Ziyu Zhou, Yvar P. van Steenis, Surya Henry, Elisa C. H. van Doorn, Jorik H. Amesz, Pieter C. van de Woestijne, Natasja M. S. de Groot, Olivier C. Manintveld, Beatrijs Bartelds and Yannick J. H. J. Taverne
J. Cardiovasc. Dev. Dis. 2025, 12(7), 269; https://doi.org/10.3390/jcdd12070269 - 15 Jul 2025
Viewed by 304
Abstract
Living myocardial slices (LMSs) have shown great promise in cardiac research, allowing multicellular and complex interplay analyses with disease and patient specificity, yet their wider clinical use is limited by the large tissue sizes usually required. We therefore produced mini-LMSs (<10 mm2 [...] Read more.
Living myocardial slices (LMSs) have shown great promise in cardiac research, allowing multicellular and complex interplay analyses with disease and patient specificity, yet their wider clinical use is limited by the large tissue sizes usually required. We therefore produced mini-LMSs (<10 mm2) from routine human cardiac surgery specimens and compared them with medium (10–30 mm2) and large (>30 mm2) slices. Size effects on biomechanical properties were examined with mathematical modeling, and viability, contraction profiles, and histological integrity were followed for 14 days. In total, 34 mini-, 25 medium, and 30 large LMS were maintained viable, the smallest measuring only 2 mm2. Peak twitch force proved to be size-independent, whereas time-to-peak shortened as slice area decreased. Downsized LMSs displayed excellent contractile behavior for five to six days, after which a gradual functional decline and micro-architectural changes emerged. These findings confirm, for the first time, that mini-LMSs are feasible and viable, enabling short-term, patient-specific functional studies and pharmacological testing when tissue is scarce. Full article
Show Figures

Figure 1

16 pages, 1816 KiB  
Article
Optimized Conditions for Electrical Tissue Stimulation with Biphasic, Charge-Balanced Impulses
by Zhengwu Sun, Payel Sen, Jules Hamers, Thomas Seidel, Andreas Dendorfer and Petra Kameritsch
Bioengineering 2025, 12(3), 234; https://doi.org/10.3390/bioengineering12030234 - 26 Feb 2025
Cited by 1 | Viewed by 1063
Abstract
The cultivation of excitable cells typically profits from continuous electrical stimulation, but electrochemical consequences are mostly harmful and must be minimized. The properties of the electrode materials and stimulation impulses are key. Here, we developed an easy method to analyze the electrochemical impact [...] Read more.
The cultivation of excitable cells typically profits from continuous electrical stimulation, but electrochemical consequences are mostly harmful and must be minimized. The properties of the electrode materials and stimulation impulses are key. Here, we developed an easy method to analyze the electrochemical impact of biphasic, current-controlled impulses, applied via graphite electrodes, using phenol red as the redox indicator. We also tested the stimulation conditions for the long-term cultivation of myocardial tissue. The colorimetric assay was able to detect ±0.2% deviations in typical positive and negative pulse charges. Phenol red was best preserved (20% degradation over 24 h) by impulses of equivalent positive and negative charges (full charge balance), generated with either manual calibration, capacitive electrode coupling, or feedback regulation of electrode polarization. Feedback regulation established full charge balance at pre-pulse voltages of about 300 mV, but also provided the option to selectively compensate irreversible electrode reactions. Modifications to shape and timing did not affect the electrochemical effects of symmetric impulses. Charge-balanced stimulation maintained more than 80% of the contractility of porcine left ventricular myocardium after 10 days of culture, whereas disbalances of 2–4% provoked weakening and discoloration of the tissues. Active polarization regulation, in contrast to capacitive electrode coupling, reproduced the biological advantages of full charge balance. Full article
Show Figures

Figure 1

15 pages, 2861 KiB  
Article
Acute Biomechanical Effects of Cardiac Contractility Modulation in Living Myocardial Slices from End-Stage Heart Failure Patients
by Mark F. A. Bierhuizen, Jorik H. Amesz, Sanne J. J. Langmuur, Bobby Lam, Paul Knops, Kevin M. Veen, Olivier C. Manintveld, Jolanda Kluin, Natasja M. S. de Groot and Yannick J. H. J. Taverne
Bioengineering 2025, 12(2), 174; https://doi.org/10.3390/bioengineering12020174 - 12 Feb 2025
Viewed by 1281
Abstract
Proof-of-concept to determine the direct biomechanical effects of cardiac contractility modulation (CCM) on living myocardial slices (LMS) from patients with end-stage heart failure (HF). Left ventricular LMS from patients with end-stage HF were produced and cultured in a biomimetic system with mechanical loading [...] Read more.
Proof-of-concept to determine the direct biomechanical effects of cardiac contractility modulation (CCM) on living myocardial slices (LMS) from patients with end-stage heart failure (HF). Left ventricular LMS from patients with end-stage HF were produced and cultured in a biomimetic system with mechanical loading and electrical stimulation. CCM stimulation (80 mA, 40 ms delay, 21 ms duration) enhanced maximum contractile force (CCM: 1229 µN (587–2658) vs. baseline: 1066 µN (529–2128), p = 0.05) and area under the contractile curve (CCM: 297 (151–562) vs. baseline: 243 (129–464), p = 0.05) but did not significantly impact contractile duration, time to peak, or time to relaxation. Increasing CCM stimulation delay, duration, and amplitude resulted in a higher fraction of LMS with a positive inotropic response. Furthermore, CCM attenuated the negative force-frequency relationship in HF-LMS. CCM stimulation enhanced contractile force in HF-LMS. The fraction of LMS exerting a positive inotropic response to CCM increased with increasing delay, duration, and amplitude settings, suggesting that personalizing stimulation parameters could optimize the beneficial effects of CCM. CCM is a novel device-based therapy that may improve contractile function, ejection fraction, functional outcomes, and quality of life in patients with heart failure. However, continuous efforts are needed to identify true responders to CCM therapy, understand the exact mechanisms, and optimize the contractile response to CCM stimulation. The present study revealed that CCM enhanced the contractile force of HF-LMS in a stimulation setting-dependent manner, reaching a larger fraction of the myocardium while increasing delay, duration, and amplitude. This understanding may contribute to the individualization of CCM stimulation settings. Full article
Show Figures

Figure 1

19 pages, 5303 KiB  
Article
Prolonged Hypoxia in Rat Living Myocardial Slices Affects Function, Expression, and Structure
by Florian J. G. Waleczek, Giuseppe Cipriano, Jonas A. Haas, Ankita Garg, Angelika Pfanne, Annette Just, Susanne Neumüller, Jan Hegermann, Andreas Pich, Ante Radocaj, Ke Xiao, Natalie Weber and Thomas Thum
Int. J. Mol. Sci. 2025, 26(1), 218; https://doi.org/10.3390/ijms26010218 - 30 Dec 2024
Cited by 2 | Viewed by 1185
Abstract
Ischemic heart disease is the leading cause of death worldwide. Reduced oxygen supply and myocardial hypoxia lead to tissue damage and impairment of the heart function. To the best of our knowledge, the primary functional effects of hypoxia in the multicellular model of [...] Read more.
Ischemic heart disease is the leading cause of death worldwide. Reduced oxygen supply and myocardial hypoxia lead to tissue damage and impairment of the heart function. To the best of our knowledge, the primary functional effects of hypoxia in the multicellular model of living myocardial slices (LMSs) have not been investigated so far. In this study, we analyzed force generation, ultrastructure, gene expression, and proteome changes in rat LMS after 24 h of ex vivo culture in normal and reduced levels of oxygen (O2). We observed a significant reduction in absolute force and a slowdown of force kinetics as well as an increase in cardiomyocyte apoptosis and myofibrillar and mitochondrial damage, as well as transcriptomic changes. Proteome analysis revealed the deregulation of proteins involved in metabolic processes, hypoxic response, and neutralizing of reactive oxygen species. Our results indicate that hypoxia induces substantial primary changes in heart tissue, which are independent of perfusion and immune responses. Our new LMS model could serve as a screening system for drug development and new mechanistic insights. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

23 pages, 6506 KiB  
Article
Ryanodine Receptor Staining Identifies Viable Cardiomyocytes in Human and Rabbit Cardiac Tissue Slices
by Ann-Katrin M. Pfeuffer, Linda K. Küpfer, Thirupura S. Shankar, Stavros G. Drakos, Tilmann Volk and Thomas Seidel
Int. J. Mol. Sci. 2023, 24(17), 13514; https://doi.org/10.3390/ijms241713514 - 31 Aug 2023
Cited by 2 | Viewed by 2565
Abstract
In terms of preserving multicellularity and myocardial function in vitro, the cultivation of beating myocardial slices is an emerging technique in basic and translational cardiac research. It can be used, for example, for drug screening or to study pathomechanisms. Here, we describe staining [...] Read more.
In terms of preserving multicellularity and myocardial function in vitro, the cultivation of beating myocardial slices is an emerging technique in basic and translational cardiac research. It can be used, for example, for drug screening or to study pathomechanisms. Here, we describe staining for viable cardiomyocytes based on the immunofluorescence of ryanodine receptors (RyRs) in human and rabbit myocardial slices. Biomimetic chambers were used for culture and measurements of contractile force. Fixable fluorophore-conjugated dextran, entering cells with a permeable membrane, was used for death staining. RyRs, nuclei and the extracellular matrix, including the t-system, were additionally stained and analyzed by confocal microscopy and image processing. We found the mutual exclusion of the RyR and dextran signals in cultivated slices. T-System density and nucleus size were reduced in RyR-negative/dextran-positive myocytes. The fraction of RyR-positive myocytes and pixels correlated with the contractile force. In RyR-positive/dextran-positive myocytes, we found irregular RyR clusters and SERCA distribution patterns, confirmed by an altered power spectrum. We conclude that RyR immunofluorescence indicates viable cardiomyocytes in vibratome-cut myocardial slices, facilitating the detection and differential structural analysis of living vs. dead or dying myocytes. We suggest the loss of sarcoplasmic reticulum integrity as an early event during cardiomyocyte death. Full article
(This article belongs to the Special Issue Cell Death in Cardiovascular Disease)
Show Figures

Figure 1

Back to TopTop