Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = liquefaction flow slide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 8336 KiB  
Article
Analysis of the Differences Between Two Landslides on One Slope in Yongguang Village Based on Physical Models and Groundwater Identification
by Fucun Lu, Kun Liu, Shunhua Xu, Jianyu Zhang and Dingnan Guo
Water 2024, 16(24), 3591; https://doi.org/10.3390/w16243591 - 13 Dec 2024
Cited by 1 | Viewed by 950
Abstract
In 2013, a Ms 6.6 earthquake occurred at the boundary of Min County and Zhang County, triggering numerous landslides. Notably, two landslides with significantly different sliding characteristics emerged less than 100 m apart in Yongguang Village, Min County. The eastern landslide was characterized [...] Read more.
In 2013, a Ms 6.6 earthquake occurred at the boundary of Min County and Zhang County, triggering numerous landslides. Notably, two landslides with significantly different sliding characteristics emerged less than 100 m apart in Yongguang Village, Min County. The eastern landslide was characterized by instability induced by seismic inertial forces, whereas the western landslide exhibited flow slides triggered by liquefaction in loess. To further analyze the causes of these landslides, this study employed a 1 m depth ground temperature survey to probe the shallow groundwater in the area, aiming to understand the distribution of shallow groundwater. Based on the results from the 1 m depth ground temperature survey, a random forest model was applied to regressively predict the initial groundwater levels. The TRIGRS model was utilized to evaluate the influence of pre-earthquake rainfall conditions on landslide stability, and the pore water pressure outputs from TRIGRS were integrated with the Scoops3D model to analyze landslide stability under seismic effects. The results indicate that the combination of the 1 m depth ground temperature survey with high-density electrical methods and random forest approaches effectively captures the initial groundwater levels across the region. Notably, the heavy rainfall occurring one day prior to the earthquake did not significantly reduce the stability of the landslide in Yongguang Village. Instead, the abundant groundwater in the source area of the western landslide, combined with several months of pre-earthquake rainfall, resulted in elevated groundwater levels that created favorable conditions for its occurrence. While the primary triggering factor for both landslides in Yongguang Village was the earthquake, the distinct topographic and groundwater conditions led to significantly different sliding characteristics under seismic influence at the same slope. Full article
Show Figures

Figure 1

20 pages, 10464 KiB  
Article
Study on the Evolution Characteristics of Dam Failure Due to Flood Overtopping of Tailings Ponds
by Zhijie Duan, Jinglong Chen, Jing Xie, Quanming Li, Hong Zhang and Cheng Chen
Water 2024, 16(17), 2406; https://doi.org/10.3390/w16172406 - 27 Aug 2024
Viewed by 1648
Abstract
There has been a frequent occurrence of tailing dam failures in recent years, leading to severe repercussions. Flood overtopping is an important element contributing to these failures. Nevertheless, there is a scarcity of studies about the evolutionary mechanisms of dam breaches resulting from [...] Read more.
There has been a frequent occurrence of tailing dam failures in recent years, leading to severe repercussions. Flood overtopping is an important element contributing to these failures. Nevertheless, there is a scarcity of studies about the evolutionary mechanisms of dam breaches resulting from flood overtopping. In order to fill this knowledge vacuum, this study focused on the evolutionary characteristics and triggering mechanisms of overtopping failures, utilizing the Heshangyu tailings pond as a prototype. The process of overtopping breach evolution was revealed by the conduction of small-scale model testing. A scaled-down replica of the tailings pond was constructed at a ratio of 1:150, and a controlled experiment was conducted to simulate a breach in the dam caused by water overflowing. Based on the results, the following conclusions were drawn: (1) The rise in water level in the pond caused the tailings to become saturated, leading to liquefaction flow and local slope sliding at the initial dam. If the sediment-carrying capacity of the overflowing water exceeded the shear strength of the tailings, water erosion would accelerate landslides on the slope, generating a sand-laden water flow. (2) The breach was primarily influenced by water erosion, which subsequently resulted in both laterally widened and longitudinally deepened breach. As the breach expanded, the sand-carrying capacity of the water flow increased, leading to a faster rate of failure. The breach process of overtopping can be categorized into four distinct stages: gully formation stage, lateral broadening stage of gully, cracks and collapse on the slope surface, and stable stage of collapse. (3) The tailings from the outflow spread downstream in a radial pattern, forming an alluvial fan. Additionally, the depth of the deposited mud first increased and subsequently declined as the distance from the breach grew. The findings of this research provide an important basis for the prevention and control of tailings dam breach disasters due to overtopping. Full article
Show Figures

Figure 1

40 pages, 16981 KiB  
Article
An Integrated Bayesian Risk Model for Coastal Flow Slides Using 3-D Hydrodynamic Transport and Monte Carlo Simulation
by Ahmet Durap, Can Elmar Balas, Şevket Çokgör and Egemen Ander Balas
J. Mar. Sci. Eng. 2023, 11(5), 943; https://doi.org/10.3390/jmse11050943 - 28 Apr 2023
Cited by 11 | Viewed by 3476
Abstract
The literature suggests two forms of flow slides: breaching and liquefaction. Both forms of failure have comparable ultimate circumstances, but the progression and sand movement mechanisms of breaching failure diverge from those of liquefaction. The first type, breaching, occurs in densely packed sand [...] Read more.
The literature suggests two forms of flow slides: breaching and liquefaction. Both forms of failure have comparable ultimate circumstances, but the progression and sand movement mechanisms of breaching failure diverge from those of liquefaction. The first type, breaching, occurs in densely packed sand and is characterized by slow sand grain discharge throughout the dilation of the failing soil particles and negative excess pore pressures. The latter form, known as liquefaction, is the process by which a mass of soil abruptly begins to behave like a flowing liquid, and as a result, it can flow out across overly mild slopes. The process begins in compacted sand and is linked to positive surplus pore water pressures that are caused by the compaction of the sand. Despite the available literature on flow slide failures, our understanding of the mechanisms involved remains limited. Since flow slides often begin below the water surface, they can go undetected until the collapse reaches the bank above ground. The complexity of flow slides requires the use of cutting-edge technological instruments, diving equipment, advanced risk assessment, and a variety of noteworthy probabilistic and sensitivity analyses. Hence, we developed a new sensitivity index to identify the risk of breach failure and vulnerable coastal areas to this risk. In addition, we developed a sophisticated hybrid model that allows for all possibilities of flow slides in sync with random variables used in this new sensitivity index. In this new hybrid model, three distinctive models exist. The 3D Hydrodynamic Model addresses waves, wind, current, climate change, and sediment transport. The Monte Carlo Simulation is responsible for sensitivity analysis, and the Bayesian Network focuses on joint probabilities of coastal flow slide parameters of this new index that incorporates all environmental parameters, including climate change. With the assistance of these three models, researchers aim to: (a) expand the application scope by presenting a method on coastal flow slides; (b) consider different particle diameters corresponding to critical angle slope failure; (c) analyze variables that can play a pivotal role in the flow slides; and (d) present a methodology for coupling coastal flow slide projections with reliable outcomes. The hybrid model incorporates random variables of retrogressive breach failures, and the new risk index considers their ranges to control the simulation. The use of such a hybrid model and risk index offers a robust and computationally efficient approach to evaluating coastal flow slides. Full article
(This article belongs to the Special Issue Geological Environment and Engineering in Coastal Region)
Show Figures

Figure 1

28 pages, 7575 KiB  
Case Report
Bank Protection Structures along the Brahmaputra-Jamuna River, a Study of Flow Slides
by Maarten van der Wal
Water 2020, 12(9), 2588; https://doi.org/10.3390/w12092588 - 16 Sep 2020
Cited by 18 | Viewed by 12846
Abstract
The planform of the Brahmaputra-Jamuna River followed its natural path in Bangladesh until the construction of bank protection works started to save Sirajganj from bank erosion since the 1930s. Several so-called hardpoints such as groynes and revetments were constructed in the period 1980–2015 [...] Read more.
The planform of the Brahmaputra-Jamuna River followed its natural path in Bangladesh until the construction of bank protection works started to save Sirajganj from bank erosion since the 1930s. Several so-called hardpoints such as groynes and revetments were constructed in the period 1980–2015 and the Jamuna Multipurpose Bridge was opened in 1998. The Brahmaputra Right Embankment and other projects had saved the western flood plain from inundation during monsoon floods. These river training works experienced severe damage by geotechnical failures, mostly flow slides. A flow slide is an underwater slope failure because of liquefaction or a breaching process in the subsoil or a combination of both. The design of most of these training works did not consider the risk of damage by flow slides. All descriptions of the observed damages show that scour phenomena in the channel close to a river training work are a cause of flow slides, besides pore water outflow. The research question was: how can the design of river training works be improved to reduce the risk of damage by flow slides? The main part of the investigation was focussed on reducing local scour holes near river training works. The most promising results are river training works with gentle bank slopes, permeable groynes, bed protections in dredged trenches with gentle side slopes, and methods to increase locally the bearing capacity of the subsoil. It is recommended to increase the knowledge of the failure mechanisms in the Brahmaputra-Jamuna River by improved monitoring in the field, the setup of a database with descriptions of all observed flow slides and the circumstances in which they occur. In addition to these recommendations, a field test facility is proposed to verify the knowledge of the failure mechanisms in that river. These activities will optimise the design of new river training structures with a very low risk of damages by flow slides and geotechnical instabilities and they will contribute to an improvement of the current design guidelines for river training structures. Full article
(This article belongs to the Special Issue Studies on River Training)
Show Figures

Figure 1

26 pages, 7108 KiB  
Article
Watching the Beach Steadily Disappearing: The Evolution of Understanding of Retrogressive Breach Failures
by Dick R. Mastbergen, Konrad Beinssen and Yves Nédélec
J. Mar. Sci. Eng. 2019, 7(10), 368; https://doi.org/10.3390/jmse7100368 - 17 Oct 2019
Cited by 15 | Viewed by 7428
Abstract
Retrogressive breach failures or coastal flow slides occur naturally in the shoreface in fine sands near dynamic tidal channels or rivers. They sometimes retrogress into beaches, shoal margins and riverbanks where they can threaten infrastructure and cause severe coastal erosion and flood risk. [...] Read more.
Retrogressive breach failures or coastal flow slides occur naturally in the shoreface in fine sands near dynamic tidal channels or rivers. They sometimes retrogress into beaches, shoal margins and riverbanks where they can threaten infrastructure and cause severe coastal erosion and flood risk. Ever since the first reports were published in the Netherlands over a century ago, attempts have been made to understand the geo-mechanical mechanism of flow slides. In this paper we have established that events, observed during the active phase, are characterized by a slow but steady retrogression into the shoreline, often continuing for many hours. This can be explained by the breaching mechanism, as will be clarified in this paper. Recently, further evidence has become available in the form of video footage of active events in Australia and elsewhere, often publicly posted on the internet. All these observations justify the new term ‘retrogressive breach failure’ (RBF event). The mechanism has been confirmed in flume tests and in a field experiment. With a better understanding of the geo-mechanical mechanism, current protection methods can be better understood, and new defense strategies can be envisaged. In writing this paper, we hope that the coastal science and engineering communities will better recognize and understand these intriguing natural events. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Graphical abstract

Back to TopTop