Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = liposomal bovine lactoferrin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1991 KB  
Article
Liposomal Lactoferrin Reduces Brain Neuroinflammation in Rats and Alleviates Jetlag and Improves Sleep Quality After Long-Haul Travel
by Shoko Uesaki, Masanori Yamato, Atsushi Ishikado, Yutaka Suekawa, Yasuhisa Tamura and Yosky Kataoka
NeuroSci 2025, 6(1), 19; https://doi.org/10.3390/neurosci6010019 - 1 Mar 2025
Cited by 1 | Viewed by 3203
Abstract
Insufficient sleep and circadian misalignment increase inflammatory agents. This triggers neuroinflammation and can result in health issues including depression, dementia, lifestyle-related diseases, and industrial accidents. Lactoferrin (LF) confers neuroprotective effects, which are derived from its anti-inflammatory, antioxidant, and iron metabolic properties; however, its [...] Read more.
Insufficient sleep and circadian misalignment increase inflammatory agents. This triggers neuroinflammation and can result in health issues including depression, dementia, lifestyle-related diseases, and industrial accidents. Lactoferrin (LF) confers neuroprotective effects, which are derived from its anti-inflammatory, antioxidant, and iron metabolic properties; however, its roles in acute neuroinflammation and circadian rhythm disruption are yet to be elucidated. Therefore, we aimed to test the effects of LF on rat neuroinflammation and sleep and jetlag in humans. Rats received 7 days of an oral liposomal bovine LF (L-bLF) or vehicle followed by polyriboinosinic:polyribocytidylic acid (poly I:C) peritoneal injections (n = 5–6). Compared with the rats given poly I:C only, the rats given L-bLF and poly I:C had lower Il1b, Tnf, Casp1, Nfe212, Gclm, and Sod2 expression in the hippocampus. This open-label pilot study was carried out on tour conductors performing regular international tour responsibilities, and the data were compared between the initial tour without L-bLF intake and the subsequent tour with L-bLF intake. In the tour with L-bLF intake, L-bLF administration started from one week before the trip and was continued during the trip. In both periods, the tour conductors experienced limited sleep; however, both subjective and objective sleep quality was significantly better with the oral L-bLF intake than without. Overall, we found that prophylactic L-bLF supplementation reduced neuroinflammation in rat hippocampi and improved sleep quality and jetlag in tour conductors. Full article
Show Figures

Figure 1

27 pages, 6996 KB  
Article
Bovine Lactoferrin-Loaded Plasmonic Magnetoliposomes for Antifungal Therapeutic Applications
by Mélanie Pereira, Ana Rita O. Rodrigues, Leslie Amaral, Manuela Côrte-Real, Cátia Santos-Pereira and Elisabete M. S. Castanheira
Pharmaceutics 2023, 15(8), 2162; https://doi.org/10.3390/pharmaceutics15082162 - 19 Aug 2023
Cited by 6 | Viewed by 2449
Abstract
Bovine lactoferrin (bLf) is a milk-derived protein that exhibits potent broad-spectrum antifungal activity against multiple fungi. bLf is susceptible to degradation, while some of its properties depend on the tertiary structure. So, the encapsulation of bLf in stimuli-responsive therapeutic formulations provides an added [...] Read more.
Bovine lactoferrin (bLf) is a milk-derived protein that exhibits potent broad-spectrum antifungal activity against multiple fungi. bLf is susceptible to degradation, while some of its properties depend on the tertiary structure. So, the encapsulation of bLf in stimuli-responsive therapeutic formulations provides an added value to enhance its biological activities. Plasmonic magnetoliposomes (PMLs) arise as promising nanocarriers for dual hyperthermia (magneto-photothermia) and local chemotherapy, since the combination of magnetic and gold nanoparticles (NPs) in a single nanosystem (multifunctional liposomes) enables the targeting and controlled release of loaded drugs. In this work, plasmonic magnetoliposomes (PMLs) containing manganese ferrite nanoparticles (28 nm size) and gold nanoparticles (5–7.5 nm size), functionalized with 11-mercaptoundecanoic acid or octadecanethiol, were prepared and loaded with bLf. The NPs’ optical, magnetic and structural properties were measured via UV/vis/NIR absorption spectroscopy, SQUID and TEM, respectively. The Specific Absorption Rate (SAR) was calculated to assess the capabilities for magnetic and photothermal hyperthermia. Finally, the antifungal potential of bLf-loaded PMLs and their mechanism of internalization were assessed in Saccharomyces cerevisiae by counting the colony forming units and using fluorescence microscopy. The results demonstrate that PMLs are mainly internalized through an energy- and temperature-dependent endocytic process, though the contribution of a diffusion component cannot be discarded. Most notably, only bLf-loaded plasmonic magnetoliposomes display cytotoxicity with an efficiency similar to free bLf, attesting their promising potential for bLf delivery in the context of antifungal therapeutic interventions. Full article
(This article belongs to the Special Issue Stimuli-Responsive Therapeutic Formulations for Drug Release)
Show Figures

Figure 1

10 pages, 1659 KB  
Communication
Liposomal Lactoferrin Exerts Antiviral Activity against HCoV-229E and SARS-CoV-2 Pseudoviruses In Vitro
by Sabina Andreu, Inés Ripa, Raquel Bello-Morales and José Antonio López-Guerrero
Viruses 2023, 15(4), 972; https://doi.org/10.3390/v15040972 - 15 Apr 2023
Cited by 16 | Viewed by 4498
Abstract
A limited number of effective therapies are currently available to treat human coronavirus SARS-CoV-2 and other human coronaviruses, which are responsible for nearly a third of global cases of the common cold. The possibility of new emerging coronaviruses demands powerful new antiviral strategies. [...] Read more.
A limited number of effective therapies are currently available to treat human coronavirus SARS-CoV-2 and other human coronaviruses, which are responsible for nearly a third of global cases of the common cold. The possibility of new emerging coronaviruses demands powerful new antiviral strategies. Lactoferrin is a well-known protein that possesses anti-inflammatory and immunomodulatory activities, and it has previously shown antiviral activity against several viruses, including SARS-CoV-2. To increase this antiviral activity, here we present bovine liposomal lactoferrin. Liposomal encapsulation of the compound was proven to increase permeability, bioavailability, and time release. In the present work, we compare the antiviral activity of free and liposomal bovine lactoferrin against HCoV229E and SARS-CoV-2 in vitro and in human primary bronchial epithelial cells, and we demonstrated that the liposomal form exerts a more potent antiviral activity than its free form at non-cytotoxic doses. Full article
(This article belongs to the Collection SARS-CoV-2 and COVID-19)
Show Figures

Figure 1

16 pages, 4174 KB  
Article
Bovine Lactoferrin Suppresses Tumor Angiogenesis through NF-κB Pathway Inhibition by Binding to TRAF6
by Nurina Febriyanti Ayuningtyas, Chanbora Chea, Toshinori Ando, Karina Erda Saninggar, Keiji Tanimoto, Toshihiro Inubushi, Nako Maishi, Kyoko Hida, Masanobu Shindoh, Mutsumi Miyauchi and Takashi Takata
Pharmaceutics 2023, 15(1), 165; https://doi.org/10.3390/pharmaceutics15010165 - 3 Jan 2023
Cited by 13 | Viewed by 3478
Abstract
Tumor angiogenesis is essential for tumor progression. The inhibition of tumor angiogenesis is a promising therapy for tumors. Bovine lactoferrin (bLF) has been reported as an anti-tumor agent. However, bLF effects on tumor angiogenesis are not well demonstrated. This study evaluated the inhibitory [...] Read more.
Tumor angiogenesis is essential for tumor progression. The inhibition of tumor angiogenesis is a promising therapy for tumors. Bovine lactoferrin (bLF) has been reported as an anti-tumor agent. However, bLF effects on tumor angiogenesis are not well demonstrated. This study evaluated the inhibitory effects of bLF on tumor angiogenesis in vivo and in vitro. Herein, tumor endothelial cells (TECs) and normal endothelial cells (NECs) were used. Proliferation, migration, tube formation assays, RT-PCR, flow cytometry, Western blotting, siRNA experiments and immunoprecipitation were conducted to clarify the mechanisms of bLF-induced effects. CD-31 immunoexpression was examined in tumor tissues of oral squamous cell carcinoma mouse models with or without Liposomal bLF (LbLF)-administration. We confirmed that bLF inhibited proliferation/migration/tube formation and increased apoptosis in TECs but not NECs. TNF receptor-associated factor 6 (TRAF6), p-p65, hypoxia inducible factor-α (HIF-1α) and vascular endothelial growth factor (VEGF) were highly expressed in TECs. In TECs, bLF markedly downregulated VEGF-A, VEGF receptor (VEGFR) and HIF-1α via the inhibition of p-p65 through binding with TRAF6. Since NECs slightly expressed p-p65, bLF–TRAF-6 binding could not induce detectable changes. Moreover, orally administrated LbLF decreased CD31-positive microvascular density only in TECs. Hence, bLF specifically suppressed tumor angiogenesis through p-p65 inhibition by binding to TRAF6 and suppressing HIF-1α activation followed by VEGF/VEGFR down-regulation. Collectively, bLF can be an anti-angiogenic agent for tumors. Full article
(This article belongs to the Special Issue Lactoferrin in Biomedical Applications)
Show Figures

Figure 1

15 pages, 5190 KB  
Article
Lactoferrin as Antiviral Treatment in COVID-19 Management: Preliminary Evidence
by Elena Campione, Caterina Lanna, Terenzio Cosio, Luigi Rosa, Maria Pia Conte, Federico Iacovelli, Alice Romeo, Mattia Falconi, Claudia Del Vecchio, Elisa Franchin, Maria Stella Lia, Marilena Minieri, Carlo Chiaramonte, Marco Ciotti, Marzia Nuccetelli, Alessandro Terrinoni, Ilaria Iannuzzi, Luca Coppeta, Andrea Magrini, Sergio Bernardini, Stefano Sabatini, Felice Rosapepe, Pier Luigi Bartoletti, Nicola Moricca, Andrea Di Lorenzo, Massimo Andreoni, Loredana Sarmati, Alessandro Miani, Prisco Piscitelli, Ettore Squillaci, Piera Valenti and Luca Bianchiadd Show full author list remove Hide full author list
Int. J. Environ. Res. Public Health 2021, 18(20), 10985; https://doi.org/10.3390/ijerph182010985 - 19 Oct 2021
Cited by 69 | Viewed by 11799
Abstract
Lactoferrin (Lf), a multifunctional cationic glycoprotein synthesized by exocrine glands and neutrophils, possesses an in vitro antiviral activity against SARS-CoV-2. Thus, we conducted an in vivo preliminary study to investigate the antiviral effect of oral and intranasal liposomal bovine Lf (bLf) in asymptomatic [...] Read more.
Lactoferrin (Lf), a multifunctional cationic glycoprotein synthesized by exocrine glands and neutrophils, possesses an in vitro antiviral activity against SARS-CoV-2. Thus, we conducted an in vivo preliminary study to investigate the antiviral effect of oral and intranasal liposomal bovine Lf (bLf) in asymptomatic and mild-to-moderate COVID-19 patients. From April 2020 to June 2020, a total of 92 mild-to-moderate (67/92) and asymptomatic (25/92) COVID-19 patients were recruited and divided into three groups. Thirty-two patients (14 hospitalized and 18 in home-based isolation) received only oral and intranasal liposomal bLf; 32 hospitalized patients were treated only with standard of care (SOC) treatment; and 28, in home-based isolation, did not take any medication. Furthermore, 32 COVID-19 negative, untreated, healthy subjects were added for ancillary analysis. Liposomal bLf-treated COVID-19 patients obtained an earlier and significant (p < 0.0001) SARS-CoV-2 RNA negative conversion compared to the SOC-treated and untreated COVID-19 patients (14.25 vs. 27.13 vs. 32.61 days, respectively). Liposomal bLf-treated COVID-19 patients showed fast clinical symptoms recovery compared to the SOC-treated COVID-19 patients. In bLf-treated patients, a significant decrease in serum ferritin, IL-6, and D-dimers levels was observed. No adverse events were reported. These observations led us to speculate a potential role of bLf in the management of mild-to-moderate and asymptomatic COVID-19 patients. Full article
(This article belongs to the Special Issue COVID-19: COVID-19 Epidemiological and Clinical Challenges)
Show Figures

Figure 1

Back to TopTop