Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = ligand–ABCB1 interactions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
5 pages, 763 KiB  
Proceeding Paper
Investigating SAR Insights into Royleanones for P-gp Modulation
by Gabrielle Bangay, Vera M. S. Isca, Florencia Z. Brauning, Jelena Dinic, Milica Pesic, Bernardo Brito Palma, Daniel J. V. A. dos Santos, Ana M. Díaz-Lanza, Eduardo Borges de Melo, João Paulo Ataide Martins and Patrícia Rijo
Chem. Proc. 2024, 16(1), 35; https://doi.org/10.3390/ecsoc-28-20158 - 12 Dec 2024
Viewed by 1002
Abstract
Multidrug resistance (MDR) presents a significant challenge in modern pharmacotherapy, greatly diminishing the effectiveness of chemotherapeutic agents. A primary mechanism contributing to MDR is the overexpression of P-glycoprotein (P-gp), also known as MDR1, encoded by the ABCB1 gene, which hampers the success of [...] Read more.
Multidrug resistance (MDR) presents a significant challenge in modern pharmacotherapy, greatly diminishing the effectiveness of chemotherapeutic agents. A primary mechanism contributing to MDR is the overexpression of P-glycoprotein (P-gp), also known as MDR1, encoded by the ABCB1 gene, which hampers the success of cancer treatments. Plants from the Plectranthus genus (Lamiaceae) have been traditionally acknowledged for their diverse therapeutic applications. The principal diterpene from Plectranthus grandidentatus Gürke, 7α-acetoxy-6β-hydroxyroyleanone (Roy), has demonstrated anticancer properties against various cancer cell lines. Previously synthesized ester derivatives of Roy have shown improved binding affinity to P-gp. This study employs previously acquired in vitro data on the P-gp activity of Roy derivatives to develop a ligand-based pharmacophore model, highlighting critical features necessary for P-gp modulation. Utilizing these data, we predict the potential of five novel ester derivatives of Roy to modulate P-gp in vitro against resistant NCI-H460 cells. In silico structure–activity relationship (SAR) studies were conducted on 17 previously synthesized royleanone derivatives. A binary classification model was constructed, distinguishing inactive from active compounds, generating 11,016 molecular interaction field (MIF) descriptors from structures optimized at the DFT level. After variable reduction and selection, 12 descriptors were chosen, resulting in a model with two latent variables (LV), using only 34.14% of the encoded information for calibration (LV1: 26.82%; LV2: 7.32%). The activity prediction of new derivatives suggested that four of them have a high likelihood of activity, which will be validated in future in vitro biological assays. Full article
Show Figures

Figure 1

18 pages, 7833 KiB  
Article
Molecular Modeling Studies to Probe the Binding Hypothesis of Novel Lead Compounds against Multidrug Resistance Protein ABCB1
by Yasmeen Cheema, Kenneth J. Linton and Ishrat Jabeen
Biomolecules 2024, 14(1), 114; https://doi.org/10.3390/biom14010114 - 16 Jan 2024
Cited by 6 | Viewed by 2363
Abstract
The expression of drug efflux pump ABCB1/P-glycoprotein (P-gp), a transmembrane protein belonging to the ATP-binding cassette superfamily, is a leading cause of multidrug resistance (MDR). We previously curated a dataset of structurally diverse and selective inhibitors of ABCB1 to develop a pharmacophore model [...] Read more.
The expression of drug efflux pump ABCB1/P-glycoprotein (P-gp), a transmembrane protein belonging to the ATP-binding cassette superfamily, is a leading cause of multidrug resistance (MDR). We previously curated a dataset of structurally diverse and selective inhibitors of ABCB1 to develop a pharmacophore model that was used to identify four novel compounds, which we showed to be potent and efficacious inhibitors of ABCB1. Here, we dock the inhibitors into a model structure of the human transporter and use molecular dynamics (MD) simulations to report the conformational dynamics of human ABCB1 induced by the binding of the inhibitors. The binding hypotheses are compared to the wider curated dataset and those previously reported in the literature. Protein–ligand interactions and MD simulations are in good agreement and, combined with LipE profiling, statistical and pharmacokinetic analyses, are indicative of potent and selective inhibition of ABCB1. Full article
Show Figures

Graphical abstract

24 pages, 4827 KiB  
Article
Synergistic Inhibitory Effect of Quercetin and Cyanidin-3O-Sophoroside on ABCB1
by Kuljeet Singh, Rajesh B. Patil, Vikas Patel, Judit Remenyik, Tamás Hegedűs and Katalin Goda
Int. J. Mol. Sci. 2023, 24(14), 11341; https://doi.org/10.3390/ijms241411341 - 12 Jul 2023
Cited by 3 | Viewed by 2494
Abstract
The human ABCB1 (P-glycoprotein, Pgp) protein is an active exporter expressed in the plasma membrane of cells forming biological barriers. In accordance with its broad substrate spectrum and tissue expression pattern, it affects the pharmacokinetics of numerous chemotherapeutic drugs and it is involved [...] Read more.
The human ABCB1 (P-glycoprotein, Pgp) protein is an active exporter expressed in the plasma membrane of cells forming biological barriers. In accordance with its broad substrate spectrum and tissue expression pattern, it affects the pharmacokinetics of numerous chemotherapeutic drugs and it is involved in unwanted drug–drug interactions leading to side effects or toxicities. When expressed in tumor tissues, it contributes to the development of chemotherapy resistance in malignancies. Therefore, the understanding of the molecular details of the ligand–ABCB1 interactions is of crucial importance. In a previous study, we found that quercetin (QUR) hampers both the transport and ATPase activity of ABCB1, while cyandin-3O-sophroside (C3S) stimulates the ATPase activity and causes only a weak inhibition of substrate transport. In the current study, when QUR and C3S were applied together, both a stronger ATPase inhibition and a robust decrease in substrate transport were observed, supporting their synergistic ABCB1 inhibitory effect. Similar to cyclosporine A, a potent ABCB1 inhibitor, co-treatment with QUR and C3S shifted the conformational equilibrium to the “inward-facing” conformer of ABCB1, as it was detected by the conformation-selective UIC2 mAb. To gain deeper insight into the molecular details of ligand–ABCB1 interactions, molecular docking experiments and MD simulations were also carried out. Our in silico studies support that QUR and C3S can bind simultaneously to ABCB1. The most favourable ligand–ABCB1 interaction is obtained when C3S binds to the central substrate binding site and QUR occupies the “access tunnel”. Our results also highlight that the strong ABCB1 inhibitory effect of the combined treatment with QUR and C3S may be exploited in chemotherapy protocols for the treatment of multidrug-resistant tumors or for improving drug delivery through pharmacological barriers. Full article
(This article belongs to the Special Issue ABC Transporters: Where Are We 45 Years On?)
Show Figures

Figure 1

20 pages, 2971 KiB  
Article
Target Hopping from Protein Kinases to PXR: Identification of Small-Molecule Protein Kinase Inhibitors as Selective Modulators of Pregnane X Receptor from TüKIC Library
by Enni-Kaisa Mustonen, Tatu Pantsar, Azam Rashidian, Juliander Reiner, Matthias Schwab, Stefan Laufer and Oliver Burk
Cells 2022, 11(8), 1299; https://doi.org/10.3390/cells11081299 - 12 Apr 2022
Cited by 5 | Viewed by 4889
Abstract
Small-molecule protein kinase inhibitors are used for the treatment of cancer, but off-target effects hinder their clinical use. Especially off-target activation of the pregnane X receptor (PXR) has to be considered, as it not only governs drug metabolism and elimination, but also can [...] Read more.
Small-molecule protein kinase inhibitors are used for the treatment of cancer, but off-target effects hinder their clinical use. Especially off-target activation of the pregnane X receptor (PXR) has to be considered, as it not only governs drug metabolism and elimination, but also can promote tumor growth and cancer drug resistance. Consequently, PXR antagonism has been proposed for improving cancer drug therapy. Here we aimed to identify small-molecule kinase inhibitors of the Tübingen Kinase Inhibitor Collection (TüKIC) compound library that would act also as PXR antagonists. By a combination of in silico screen and confirmatory cellular reporter gene assays, we identified four novel PXR antagonists and a structurally related agonist with a common phenylaminobenzosuberone scaffold. Further characterization using biochemical ligand binding and cellular protein interaction assays classified the novel compounds as mixed competitive/noncompetitive, passive antagonists, which bind PXR directly and disrupt its interaction with coregulatory proteins. Expression analysis of prototypical PXR target genes ABCB1 and CYP3A4 in LS174T colorectal cancer cells and HepaRG hepatocytes revealed novel antagonists as selective receptor modulators, which showed gene- and tissue-specific effects. These results demonstrate the possibility of dual PXR and protein kinase inhibitors, which might represent added value in cancer therapy. Full article
Show Figures

Figure 1

35 pages, 11465 KiB  
Article
Homology Modeling of the Human P-glycoprotein (ABCB1) and Insights into Ligand Binding through Molecular Docking Studies
by Liadys Mora Lagares, Nikola Minovski, Ana Yisel Caballero Alfonso, Emilio Benfenati, Sara Wellens, Maxime Culot, Fabien Gosselet and Marjana Novič
Int. J. Mol. Sci. 2020, 21(11), 4058; https://doi.org/10.3390/ijms21114058 - 5 Jun 2020
Cited by 53 | Viewed by 8167
Abstract
The ABCB1 transporter also known as P-glycoprotein (P-gp) is a transmembrane protein belonging to the ATP binding cassette super-family of transporters; it is a xenobiotic efflux pump that limits intracellular drug accumulation by pumping the compounds out of cells. P-gp contributes to a [...] Read more.
The ABCB1 transporter also known as P-glycoprotein (P-gp) is a transmembrane protein belonging to the ATP binding cassette super-family of transporters; it is a xenobiotic efflux pump that limits intracellular drug accumulation by pumping the compounds out of cells. P-gp contributes to a decrease of toxicity and possesses broad substrate specificity. It is involved in the failure of numerous anticancer and antiviral chemotherapies due to the multidrug resistance (MDR) phenomenon, where it removes the chemotherapeutics out of the targeted cells. Understanding the details of the ligand–P-gp interaction is therefore crucial for the development of drugs that might overcome the MRD phenomenon and for obtaining a more effective prediction of the toxicity of certain compounds. In this work, an in silico modeling was performed using homology modeling and molecular docking methods with the aim of better understanding the ligand–P-gp interactions. Based on different mouse P-gp structural templates from the PDB repository, a 3D model of the human P-gp (hP-gp) was constructed by means of protein homology modeling. The homology model was then used to perform molecular docking calculations on a set of thirteen compounds, including some well-known compounds that interact with P-gp as substrates, inhibitors, or both. The sum of ranking differences (SRD) was employed for the comparison of the different scoring functions used in the docking calculations. A consensus-ranking scheme was employed for the selection of the top-ranked pose for each docked ligand. The docking results showed that a high number of π interactions, mainly π–sigma, π–alkyl, and π–π type of interactions, together with the simultaneous presence of hydrogen bond interactions contribute to the stability of the ligand–protein complex in the binding site. It was also observed that some interacting residues in hP-gp are the same when compared to those observed in a co-crystallized ligand (PBDE-100) with mouse P-gp (PDB ID: 4XWK). Our in silico approach is consistent with available experimental results regarding P-gp efflux transport assay; therefore it could be useful in the prediction of the role of new compounds in systemic toxicity. Full article
Show Figures

Figure 1

Back to TopTop