Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = lifting wavelet threshold de-noising

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 8373 KiB  
Article
CEEMDAN-LWT De-Noising Method for Pipe-Jacking Inertial Guidance System Based on Fiber Optic Gyroscope
by Yutong Zu, Lu Wang, Yuanbiao Hu and Gansheng Yang
Sensors 2024, 24(4), 1097; https://doi.org/10.3390/s24041097 - 7 Feb 2024
Cited by 4 | Viewed by 1481
Abstract
An inertial guidance system based on a fiber optic gyroscope (FOG) is an effective way to guide long-distance curved pipe jacking. However, environmental disturbances such as vibration, electromagnetism, and temperature will cause the FOG signal to generate significant random noise. The random noise [...] Read more.
An inertial guidance system based on a fiber optic gyroscope (FOG) is an effective way to guide long-distance curved pipe jacking. However, environmental disturbances such as vibration, electromagnetism, and temperature will cause the FOG signal to generate significant random noise. The random noise will overwhelm the effective signal. Therefore, it is necessary to eliminate the random noise. This study proposes a hybrid de-noising method, namely complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN)—lifting wavelet transform (LWT). Firstly, the FOG signal is extracted using a sliding window and decomposed by CEEMDAN to obtain the intrinsic modal function (IMF) with N different scales and one residual. Subsequently, the effective IMF components are selected according to the correlation coefficient between the IMF components and the FOG signal. Due to the low resolution of the CEEMDAN method for high-frequency components, the selected high-frequency IMF components are decomposed with lifting wavelet transform to increase the resolution of the signal. The detailed signals of the LWT decomposition are de-noised using the soft threshold de-noising method, and then the signal is reconstructed. Finally, pipe-jacking dynamic and environmental interference experiments were conducted to verify the effectiveness of the CEEMDAN-LWT de-noising method. The de-noising effect of the proposed method was evaluated by SNR, RMSE, and Deviation and compared with the CEEMDAN and LWT de-noising methods. The results show that the CEEMDAN-LWT de-noising method has the best de-noising effect with good adaptivity and high accuracy. The navigation results of the pipe-jacking attitude before and after de-noising were compared and analyzed in the environmental interference experiment. The results show that the absolute error of the pipe-jacking pitch, roll, and heading angles is reduced by 39.86%, 59.45%, and 14.29% after de-noising. The maximum relative error of the pitch angle is improved from −0.74% to −0.44%, the roll angle is improved from 2.07% to 0.79%, and the heading angle is improved from −0.07% to −0.06%. Therefore, the CEEMDAN-LWT method can effectively suppress the random errors of the FOG signal caused by the environment and improve the measurement accuracy of the pipe-jacking attitude. Full article
(This article belongs to the Special Issue Important Achievements in Optical Measurements in China 2022–2023)
Show Figures

Figure 1

19 pages, 7025 KiB  
Article
Development of Sliding Mode Controller Based on Internal Model Controller for Higher Precision Electro-Optical Tracking System
by Bing Zhang, Kang Nie, Xinglong Chen and Yao Mao
Actuators 2022, 11(1), 16; https://doi.org/10.3390/act11010016 - 7 Jan 2022
Cited by 14 | Viewed by 3831
Abstract
The electro-optical tracking system (ETS) on moving platforms is affected by the vibration of the moving carrier, the wind resistance torque in motion, the uncertainty of mechanisms and the nonlinear friction between frames and other disturbances, which may lead to the instability of [...] Read more.
The electro-optical tracking system (ETS) on moving platforms is affected by the vibration of the moving carrier, the wind resistance torque in motion, the uncertainty of mechanisms and the nonlinear friction between frames and other disturbances, which may lead to the instability of the electro-optical tracking platform. Sliding mode control (SMC) has strong robustness to system disturbances and unknown dynamic external signals, which can enhance the disturbance suppression ability of ETSs. However, the strong robustness of SMC requires greater switching gain, which causes serious chattering. At the same time, the tracking accuracy of SMC has room for further improvement. Therefore, in order to solve the chattering problem of SMC and improve the tracking accuracy of SMC, an SMC controller based on internal model control (IMC) is proposed. Compared with traditional SMC, the proposed method can be used to suppress the strongest disturbance with the smallest switching gain, effectively solving the chattering problem of the SMC, while improving the tracking accuracy of the system. In addition, to reduce the adverse influence of sensor noise on the control effect, lifting wavelet threshold de-noising is introduced into the control structure to further improve the tracking accuracy of the system. The simulation and experimental results verify the superiority of the proposed control method. Full article
(This article belongs to the Special Issue Design and Control of High-Precision Motion Systems)
Show Figures

Figure 1

18 pages, 5973 KiB  
Article
Denoising of LCR Wave Signal of Residual Stress for Rail Surface Based on Lifting Scheme Wavelet Packet Transform
by Peilu Li, Chunguang Xu, Qinxue Pan, Yuren Lu and Shuangyi Li
Coatings 2021, 11(5), 496; https://doi.org/10.3390/coatings11050496 - 23 Apr 2021
Cited by 6 | Viewed by 2522
Abstract
According to the acousto elastic effect, the residual stress on the surface of the rail can be evaluated by measuring the change in the propagation velocity of ultrasonic waves, such as longitudinal critically refracted (LCR) waves on the surface of the rail. The [...] Read more.
According to the acousto elastic effect, the residual stress on the surface of the rail can be evaluated by measuring the change in the propagation velocity of ultrasonic waves, such as longitudinal critically refracted (LCR) waves on the surface of the rail. The LCR wave signal is often polluted by a variety of noise sources, coupled with the influence of the poor surface condition of the inspected component, which greatly reduces the detectability and online measurement ability of the LCR wave signal. This paper proposes the application of the lifting scheme wavelet packet transform (LSWPT) denoising method to solve the noise suppression problem of LCR wave signal. The traditional wavelet transform (WT), wavelet packet transform (WPT), as well as the lifting scheme wavelet transform (LSWT) and lifting scheme wavelet packet transform are compared and analyzed in the soft thresholding and hard thresholding processing of denoising ability and efficiency of the noisy LCR wave signal. The experimental results show that the LSWPT method has the characteristics of fast calculation speed and a good denoising effect, and it is an efficient method of denoising signals for on-line ultrasonic measurement of residual stress on the rail surface. Full article
(This article belongs to the Special Issue Advanced Nondestructive Evaluation and Characterization of Surface)
Show Figures

Figure 1

12 pages, 2523 KiB  
Article
Lifting Wavelet Transform De-noising for Model Optimization of Vis-NIR Spectroscopy to Predict Wood Tracheid Length in Trees
by Ying Li, Brian K. Via, Qingzheng Cheng and Yaoxiang Li
Sensors 2018, 18(12), 4306; https://doi.org/10.3390/s18124306 - 6 Dec 2018
Cited by 8 | Viewed by 3039
Abstract
The data analysis of visible-near infrared (Vis-NIR) spectroscopy is critical for precise information extraction and prediction of fiber morphology. The objectives of this study were to discuss the de-noising of Vis-NIR spectra, taken from wood, to improve the prediction accuracy of tracheid length [...] Read more.
The data analysis of visible-near infrared (Vis-NIR) spectroscopy is critical for precise information extraction and prediction of fiber morphology. The objectives of this study were to discuss the de-noising of Vis-NIR spectra, taken from wood, to improve the prediction accuracy of tracheid length in Dahurian larch wood. Methods based on lifting wavelet transform (LWT) and local correlation maximization (LCM) algorithms were developed for optimal de-noising parameters and partial least squares (PLS) was employed as the prediction method. The results showed that: (1) The values of tracheid length in the study were generally high and had a great positive linear correlation with annual rings (R = 0.881), (2) the optimal de-noising parameters for larch wood based Vis-NIR spectra were Daubechies-2 (db2) mother wavelet with 4 decomposition levels while using a global fixed hard threshold based on LWT, and (3) the Vis-NIR model based on the optimal LWT de-noising parameters ( R c 2 = 0.834, RMSEC = 0.262, RPD c = 2.454) outperformed those based on the LWT coupled with LCM algorithm (LWT-LCM) ( R c 2 = 0.816, RMSEC = 0.276, RPD c = 2.331) and raw spectra ( R c 2 = 0.822, RMSEC = 0.271, RPD c = 2.370). Thus, the selection of appropriate LWT de-noising parameters could aid in extracting a useful signal for better prediction accuracy of tracheid length. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

Back to TopTop