Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = leucine-rich repeat-containing G-protein-coupled receptor 4

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3942 KiB  
Article
High Dietary Phosphorus Impairs Bone Microarchitecture and Induces Alterations in the LGR4–R-Spondins Axis in Rats with Normal Renal Function
by Sara Fernández-Villabrille, Francisco Baena-Huerta, Laura Suárez-Fernández, Elena Nefyodova, Paula Calvó, Nerea González-García, Helena Gil-Peña, Carlos Gómez-Alonso, Cristina Alonso-Montes, Manuel Naves-Díaz, Christa Maes, Natalia Carrillo-López and Sara Panizo
Nutrients 2025, 17(12), 2049; https://doi.org/10.3390/nu17122049 - 19 Jun 2025
Viewed by 2035
Abstract
Background: The increasing prevalence of processed foods has significantly elevated dietary phosphorus intake globally, posing a risk to skeletal health. Elevated serum phosphate promotes parathyroid hormone (PTH) release, leading to bone resorption and decreased bone formation. Objective: This study investigated the influence [...] Read more.
Background: The increasing prevalence of processed foods has significantly elevated dietary phosphorus intake globally, posing a risk to skeletal health. Elevated serum phosphate promotes parathyroid hormone (PTH) release, leading to bone resorption and decreased bone formation. Objective: This study investigated the influence of chronically elevated phosphorus intake on bone structure in rats with normal renal function, focusing on the Receptor Activator of Nuclear factor Kappa-B (RANK)/RANK ligand (RANKL)/osteoprotegerin (OPG) pathway and its related components, leucine rich repeat containing G protein-coupled receptor 4 (LGR4), and R-spondins (RSPOs). Methods: Rats were fed a high-phosphorus diet, followed by assessment of the bone microstructure and of the expression of key signalling molecules. Results: Elevated phosphorus intake induced significant bone deterioration, particularly in the trabecular bone compartment, associated with alterations in the RANK/RANKL/OPG pathway and in the LGR4 and RSPO1 and RSPO4 signalling components in bone. Moreover, we also observed changes in RANKL, RSPO1 and RSPO4 serum levels in the rats that had received a high-phosphorus diet. Conclusions: These findings highlight the detrimental impact of excessive dietary phosphorus on skeletal health, even without renal impairment, and suggest that components of this pathway, particularly RSPO1 and RSPO4, could serve as potential biomarkers of bone deterioration. The widespread consumption of phosphorus-rich processed foods underscores the importance of nutritional education to mitigate these skeletal risks in industrialized populations. Full article
(This article belongs to the Section Micronutrients and Human Health)
Show Figures

Figure 1

17 pages, 1671 KiB  
Review
LGR4 (GPR48): The Emerging Inter-Bridge in Osteoimmunology
by Wonbong Lim
Biomedicines 2025, 13(3), 607; https://doi.org/10.3390/biomedicines13030607 - 2 Mar 2025
Cited by 2 | Viewed by 1182
Abstract
Leucine-rich repeat-containing G-protein-coupled receptor 4 (LGR4), a member of the G-protein-coupled receptor (GPCR) family, has been implicated in various regulatory functions across multiple differentiation stages and numerous target sites in bone diseases. Therefore, LGR4 is a potential regulator of nuclear factor-κB ligand (RANKL) [...] Read more.
Leucine-rich repeat-containing G-protein-coupled receptor 4 (LGR4), a member of the G-protein-coupled receptor (GPCR) family, has been implicated in various regulatory functions across multiple differentiation stages and numerous target sites in bone diseases. Therefore, LGR4 is a potential regulator of nuclear factor-κB ligand (RANKL) during osteoclast differentiation. However, a comprehensive investigation of its functions and applications in bone immunology is lacking. This review discusses the molecular characteristics, signaling pathways, and role of LGR4 in osteoimmunology, with a particular focus on its interactions with RANKL during osteoclast differentiation, while identifying gaps that warrant further research. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

20 pages, 2449 KiB  
Article
RANKL, but Not R-Spondins, Is Involved in Vascular Smooth Muscle Cell Calcification through LGR4 Interaction
by Sara Fernández-Villabrille, Julia Martín-Vírgala, Beatriz Martín-Carro, Francisco Baena-Huerta, Nerea González-García, Helena Gil-Peña, Minerva Rodríguez-García, Jesús María Fernández-Gómez, José Luis Fernández-Martín, Cristina Alonso-Montes, Manuel Naves-Díaz, Natalia Carrillo-López and Sara Panizo
Int. J. Mol. Sci. 2024, 25(11), 5735; https://doi.org/10.3390/ijms25115735 - 24 May 2024
Cited by 2 | Viewed by 1606
Abstract
Vascular calcification has a global health impact that is closely linked to bone loss. The Receptor Activator of Nuclear Factor Kappa B (RANK)/RANK ligand (RANKL)/osteoprotegerin (OPG) system, fundamental for bone metabolism, also plays an important role in vascular calcification. The Leucine-rich repeat-containing G-protein-coupled [...] Read more.
Vascular calcification has a global health impact that is closely linked to bone loss. The Receptor Activator of Nuclear Factor Kappa B (RANK)/RANK ligand (RANKL)/osteoprotegerin (OPG) system, fundamental for bone metabolism, also plays an important role in vascular calcification. The Leucine-rich repeat-containing G-protein-coupled receptor 4 (LGR4), a novel receptor for RANKL, regulates bone remodeling, and it appears to be involved in vascular calcification. Besides RANKL, LGR4 interacts with R-spondins (RSPOs), which are known for their roles in bone but are less understood in vascular calcification. Studies were conducted in rats with chronic renal failure fed normal or high phosphorus diets for 18 weeks, with and without control of circulating parathormone (PTH) levels, resulting in different degrees of aortic calcification. Additionally, vascular smooth muscle cells (VSMCs) were cultured under non-calcifying (1 mM phosphate) and calcifying (3 mM phosphate) media with different concentrations of PTH. To explore the role of RANKL in VSMC calcification, increasing concentrations of soluble RANKL were added to non-calcifying and calcifying media. The effects mediated by RANKL binding to its receptor LGR4 were investigated by silencing the LGR4 receptor in VSMCs. Furthermore, the gene expression of the RANK/RANKL/OPG system and the ligands of LGR4 was assessed in human epigastric arteries obtained from kidney transplant recipients with calcification scores (Kauppila Index). Increased aortic calcium in rats coincided with elevated systolic blood pressure, upregulated Lgr4 and Rankl gene expression, downregulated Opg gene expression, and higher serum RANKL/OPG ratio without changes in Rspos gene expression. Elevated phosphate in vitro increased calcium content and expression of Rankl and Lgr4 while reducing Opg. Elevated PTH in the presence of high phosphate exacerbated the increase in calcium content. No changes in Rspos were observed under the conditions employed. The addition of soluble RANKL to VSMCs induced genotypic differentiation and calcification, partly prevented by LGR4 silencing. In the epigastric arteries of individuals presenting vascular calcification, the gene expression of RANKL was higher. While RSPOs show minimal impact on VSMC calcification, RANKL, interacting with LGR4, drives osteogenic differentiation in VSMCs, unveiling a novel mechanism beyond RANKL-RANK binding. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

20 pages, 1834 KiB  
Review
The Role of LGR4 (GPR48) in Normal and Cancer Processes
by Alejandro Ordaz-Ramos, Victor Hugo Rosales-Gallegos, Jorge Melendez-Zajgla, Vilma Maldonado and Karla Vazquez-Santillan
Int. J. Mol. Sci. 2021, 22(9), 4690; https://doi.org/10.3390/ijms22094690 - 29 Apr 2021
Cited by 24 | Viewed by 5411
Abstract
Leucine-rich repeats containing G protein-coupled receptor 4 (LGR4) is a receptor that belongs to the superfamily of G protein-coupled receptors that can be activated by R-spondins (RSPOs), Norrin, circLGR4, and the ligand of the receptor activator of nuclear factor kappa-B (RANKL) ligands to [...] Read more.
Leucine-rich repeats containing G protein-coupled receptor 4 (LGR4) is a receptor that belongs to the superfamily of G protein-coupled receptors that can be activated by R-spondins (RSPOs), Norrin, circLGR4, and the ligand of the receptor activator of nuclear factor kappa-B (RANKL) ligands to regulate signaling pathways in normal and pathological processes. LGR4 is widely expressed in different tissues where it has multiple functions such as tissue development and maintenance. LGR4 mainly acts through the Wnt/β-catenin pathway to regulate proliferation, survival, and differentiation. In cancer, LGR4 participates in tumor progression, invasion, and metastasis. Furthermore, recent evidence reveals that LGR4 is essential for the regulation of the cancer stem cell population by controlling self-renewal and regulating stem cell properties. This review summarizes the function of LGR4 and its ligands in normal and malignant processes. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

14 pages, 3140 KiB  
Article
Inhibition of RANKL-Induced Osteoclastogenesis by Novel Mutant RANKL
by Yuria Jang, Hong Moon Sohn, Young Jong Ko, Hoon Hyun and Wonbong Lim
Int. J. Mol. Sci. 2021, 22(1), 434; https://doi.org/10.3390/ijms22010434 - 4 Jan 2021
Cited by 16 | Viewed by 4129
Abstract
Background: Recently, it was reported that leucine-rich repeat-containing G-protein-coupled receptor 4 (LGR4, also called GPR48) is another receptor for RANKL and was shown to compete with RANK to bind RANKL and suppress canonical RANK signaling during osteoclast differentiation. The critical role of the [...] Read more.
Background: Recently, it was reported that leucine-rich repeat-containing G-protein-coupled receptor 4 (LGR4, also called GPR48) is another receptor for RANKL and was shown to compete with RANK to bind RANKL and suppress canonical RANK signaling during osteoclast differentiation. The critical role of the protein triad RANK–RANKL in osteoclastogenesis has made their binding an important target for the development of drugs against osteoporosis. In this study, point-mutations were introduced in the RANKL protein based on the crystal structure of the RANKL complex and its counterpart receptor RANK, and we investigated whether LGR4 signaling in the absence of the RANK signal could lead to the inhibition of osteoclastogenesis.; Methods: The effects of point-mutated RANKL (mRANKL-MT) on osteoclastogenesis were assessed by tartrate-resistant acid phosphatase (TRAP), resorption pit formation, quantitative real-time polymerase chain reaction (qPCR), western blot, NFATc1 nuclear translocation, micro-CT and histomorphological assay in wild type RANKL (mRANKL-WT)-induced in vitro and in vivo experimental mice model. Results: As a proof of concept, treatment with the mutant RANKL led to the stimulation of GSK-3β phosphorylation, as well as the inhibition of NFATc1 translocation, mRNA expression of TRAP and OSCAR, TRAP activity, and bone resorption, in RANKL-induced mouse models; and Conclusions: The results of our study demonstrate that the mutant RANKL can be used as a therapeutic agent for osteoporosis by inhibiting RANKL-induced osteoclastogenesis via comparative inhibition of RANKL. Moreover, the mutant RANKL was found to lack the toxic side effects of most osteoporosis treatments. Full article
(This article belongs to the Special Issue Osteoporosis: From Molecular Mechanisms to Therapies 3.0)
Show Figures

Figure 1

18 pages, 4017 KiB  
Article
Evidence of the Role of R-Spondin 1 and Its Receptor Lgr4 in the Transmission of Mechanical Stimuli to Biological Signals for Bone Formation
by Gui-Xun Shi, Xin-Feng Zheng, Chao Zhu, Bo Li, Yu-Ren Wang, Sheng-Dan Jiang and Lei-Sheng Jiang
Int. J. Mol. Sci. 2017, 18(3), 564; https://doi.org/10.3390/ijms18030564 - 7 Mar 2017
Cited by 39 | Viewed by 7444
Abstract
The bone can adjust its mass and architecture to mechanical stimuli via a series of molecular cascades, which have been not yet fully elucidated. Emerging evidence indicated that R-spondins (Rspos), a family of secreted agonists of the Wnt/β-catenin signaling pathway, had important roles [...] Read more.
The bone can adjust its mass and architecture to mechanical stimuli via a series of molecular cascades, which have been not yet fully elucidated. Emerging evidence indicated that R-spondins (Rspos), a family of secreted agonists of the Wnt/β-catenin signaling pathway, had important roles in osteoblastic differentiation and bone formation. However, the role of Rspo proteins in mechanical loading-influenced bone metabolism has never been investigated. In this study, we found that Rspo1 was a mechanosensitive protein for bone formation. Continuous cyclic mechanical stretch (CMS) upregulated the expression of Rspo1 in mouse bone marrow mesenchymal stem cells (BMSCs), while the expression of Rspo1 in BMSCs in vivo was downregulated in the bones of a mechanical unloading mouse model (tail suspension (TS)). On the other hand, Rspo1 could promote osteogenesis of BMSCs under CMS through activating the Wnt/β-catenin signaling pathway and could rescue the bone loss induced by mechanical unloading in the TS mice. Specifically, our results suggested that Rspo1 and its receptor of leucine-rich repeat containing G-protein-coupled receptor 4 (Lgr4) should be a novel molecular signal in the transmission of mechanical stimuli to biological signal in the bone, and this signal should be in the upstream of Wnt/β-catenin signaling for bone formation. Rspo1/Lgr4 could be a new potential target for the prevention and treatment of disuse osteoporosis in the future. Full article
(This article belongs to the Special Issue Advances in Bone and Cartilage Research)
Show Figures

Graphical abstract

Back to TopTop