Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = laundry sludge

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3111 KiB  
Article
Iron Sludge-Derived Photo-Fenton Reaction for Laundry Wastewater Effluent Oxidation and Process Optimization into Industrial Ecology Symbiosis
by Amira Ben Gouider Trabelsi, Fatemah H. Alkallas, Shehab A. Mansour, Abdullah F. Al Naim, Adil Alshoaibi, Najeh Rekik, Manasik M. Nour and Maha A. Tony
Catalysts 2025, 15(7), 669; https://doi.org/10.3390/catal15070669 - 10 Jul 2025
Viewed by 449
Abstract
Controlled iron extraction from iron-based sludge (Fe-Sludge) drainage and its use as a Fenton’s reagent is investigated in the current study for eliminating organics from launderette discharge stream. The influences of the iron dosage, hydrogen peroxide concentration, and pH are assessed [...] Read more.
Controlled iron extraction from iron-based sludge (Fe-Sludge) drainage and its use as a Fenton’s reagent is investigated in the current study for eliminating organics from launderette discharge stream. The influences of the iron dosage, hydrogen peroxide concentration, and pH are assessed as treatment factors for their direct impact on the oxidation of organic compounds. Additionally, optimal oxidation conditions are determined using the response surface methodology (RSM) technique, and the ranges of treatment variables are analyzed. The optimum values of a pH of 2.0, Fe sludge concentration of 99 mg/L, and H2O2 content of 402 mg/L resulted in optimal organics removal of up to 98%, expressed as Chemical Oxygen Demand (COD) removal. The oxidation efficacy attained from the design is confirmed and the model validation is assessed, and the suggestive model is accepted since it possesses a correlation coefficient of 97.7%. The thermodynamic and kinetic models are also investigated, and the reaction showed that the temperature increases resulted in the oxidation efficiency being reduced. The oxidation efficiency expressed as COD reduction is clearly characterized by first-order reaction kinetics. The thermodynamic characteristics indicated that the oxidation reaction was exothermic and not spontaneous. Full article
(This article belongs to the Special Issue Advanced Catalytic Processes for Wastewater Treatment)
Show Figures

Graphical abstract

15 pages, 4369 KiB  
Article
A Feasible and Efficient Monitoring Method of Synthetic Fibers Released during Textile Washing
by Oskar Świątek and Agnieszka Dąbrowska
Microplastics 2024, 3(1), 67-81; https://doi.org/10.3390/microplastics3010005 - 30 Jan 2024
Cited by 1 | Viewed by 2077
Abstract
Microfibers (MFs) are one of the most common and hazardous forms of microplastic found in the aquatic environment. The methods of collecting and analyzing MFs released during washing have to be developed and standardized to understand and model the process of microfibers’ emission [...] Read more.
Microfibers (MFs) are one of the most common and hazardous forms of microplastic found in the aquatic environment. The methods of collecting and analyzing MFs released during washing have to be developed and standardized to understand and model the process of microfibers’ emission better. This study tests a new, innovative method to check if laundry fiber sampling can be approached comprehensively. Pieces of synthetic materials (aged and new polyester, polyester-cotton blend) were placed in chromium-nickel filters envelope-like folded. Then, textile weathering during washing was monitored by the quality and quantity of fibers found directly on the filter surface. Laundry parameters like temperature, detergent presence, and filter size were changed, and results were monitored by Fourier-transform infrared spectroscopy (FTIR), a well-known standard in microplastic identification. In addition, ATR spectra were collected to characterize the materials in detail and evaluate their aging level. Spectroscopy can be used to detect and examine both mechanical and chemical degradation, and the collected microfibers can be assigned to the material they come from. Finally, a quantitative comparison of fibers released during different washing conditions can be used for the process optimization to minimize its environmental impact. Full article
(This article belongs to the Collection Current Opinion in Microplastics)
Show Figures

Figure 1

13 pages, 38234 KiB  
Article
Are Rural and Small Community Aerated Wastewater Stabilization Ponds a Neglected Source of Microplastic Pollution?
by Zhiqiang Gao, James V. Cizdziel, Kendall Wontor and Haitao Lu
Water 2021, 13(20), 2833; https://doi.org/10.3390/w13202833 - 12 Oct 2021
Cited by 8 | Viewed by 4045
Abstract
Wastewater treatment systems collect and treat sewage that includes microplastics (MPs). However, we are not aware of any studies on the occurrence and distribution of MPs in wastewater stabilization ponds (WSPs), which serve small communities worldwide. Here, we characterized MPs (~45 µm–5 mm) [...] Read more.
Wastewater treatment systems collect and treat sewage that includes microplastics (MPs). However, we are not aware of any studies on the occurrence and distribution of MPs in wastewater stabilization ponds (WSPs), which serve small communities worldwide. Here, we characterized MPs (~45 µm–5 mm) in an aerated WSP serving ~500 houses and an adjacent lake. Putative MPs were most abundant in duckweed (Lemna minor) and sludge (75 ± 22 and 12.8 ± 3.1 particles/g, respectively: ±1 standard deviation (SD), n = 6, dry weight). In the water, average concentrations (particles/L ± 1 SD, n = 6) were highest in the pond (4.1 ± 0.6), followed by effluent (3.9 ± 0.5) and the lake (2.6 ± 0.6). Over 20 types of MPs were identified in each different compartment, with the distribution varying somewhat between the water, sludge, and duckweed. Polyester and polyethylene were the predominant types, followed by polyethylene terephthalate, polyacrylate, polyvinyl chloride, polystyrene, and others. Morphologies consisted of fibers (62–71%), fragments (28–37%), and beads (1–6%). High-density polymers were more frequently found in sludge. Potential sources of the MPs include synthetic textiles from laundry and other plastics washed down household drains. Overall, with ~786,000 MPs/day released in the pond effluent and with duckweed a source of food for waterfowl, we demonstrate that WSPs can be point sources of MPs to both aquatic and terrestrial ecosystems and thus deserve further scrutiny. Full article
Show Figures

Graphical abstract

15 pages, 2157 KiB  
Communication
Degradation of Polyvinyl Alcohol in US Wastewater Treatment Plants and Subsequent Nationwide Emission Estimate
by Charles Rolsky and Varun Kelkar
Int. J. Environ. Res. Public Health 2021, 18(11), 6027; https://doi.org/10.3390/ijerph18116027 - 3 Jun 2021
Cited by 53 | Viewed by 52725
Abstract
Polyvinyl alcohol (PVA) is a water-soluble plastic commercially used in laundry and dish detergent pods (LDPs) for which a complete understanding of its fate in the environment and subsequent consequences is lacking. The objective of this study was to estimate the US nationwide [...] Read more.
Polyvinyl alcohol (PVA) is a water-soluble plastic commercially used in laundry and dish detergent pods (LDPs) for which a complete understanding of its fate in the environment and subsequent consequences is lacking. The objective of this study was to estimate the US nationwide emissions of PVA resulting from domestic use of LDPs, corroborated by a nationwide, online consumer survey and a literature review of its fate within conventional wastewater treatment plants (WWTPs). Peer-reviewed publications focusing on the degradation of PVA in critical processes of WWTPs were shortlisted as a part of the literature review, and subsequent degradation data was extracted and applied to a model with a set of assumptions. Survey and model results estimated that approximately 17,200 ± 5000 metric ton units per year (mtu/yr) of PVA are used from LDPs in the US, with 10,500 ± 3000 mtu/yr reaching WWTPs. Literature review data, when incorporated into our model, resulted in ~61% of PVA ending up in the environment via the sludge route and ~15.7% via the aqueous phase. PVA presence in the environment, regardless of its matrix, is a threat to the ecosystem due to the potential mobilization of heavy metals and other hydrophilic contaminants. Full article
(This article belongs to the Special Issue Microplastics in Marine and Freshwater Environments)
Show Figures

Figure 1

16 pages, 1625 KiB  
Article
Geochemical Assessment and Mobility of Undesired Elements in the Sludge of the Phosphate Industry of Gafsa-Metlaoui Basin, (Southern Tunisia)
by Olfa Smida, Radhia Souissi, Marzougui Salem and Fouad Souissi
Appl. Sci. 2021, 11(3), 1075; https://doi.org/10.3390/app11031075 - 25 Jan 2021
Cited by 6 | Viewed by 3544
Abstract
The raw phosphates in the Gafsa-Metlaoui phosphate basin are valorized by wet processes that are performed in the laundries of the Gafsa Phosphates Company (CPG, Gafsa, Tunisia) to reach market grades (>28% P2O5). This enrichment process allows the increase [...] Read more.
The raw phosphates in the Gafsa-Metlaoui phosphate basin are valorized by wet processes that are performed in the laundries of the Gafsa Phosphates Company (CPG, Gafsa, Tunisia) to reach market grades (>28% P2O5). This enrichment process allows the increase of P2O5 content by the elimination of the coarse (>2 mm) and fine (<71 µm) fractions. Mineralogical analysis has shown that all the investigated materials (raw phosphate, marketable phosphate, coarse waste, and fine waste) from the laundries of M’Dhilla-Zone L and Redeyef are both composed of carbonate fluorapatite, carbonates, quartz, gypsum, clays, and clinoptilolite. Chemical analysis shows that Cr, Cd, Zn, Pb, and U are concentrated in the fine wastes and associated with the clay–phosphate fraction. The rare earth elements are more concentrated in both raw and marketable phosphates. Drilling and sludge-water analysis, along with leaching tests conducted on the fine wastes, showed that, due to phosphate industry, cadmium, fluorine, and sulfate contributing to the pollution of water resources in the region, pollution is more conspicuous at M’Dhilla. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Graphical abstract

Back to TopTop