Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = lateral grain boundary (GB)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 7639 KiB  
Article
Phase-Field Simulation of Spinodal Decomposition in U-50Zr Metallic Nuclear Fuel
by Yongxiao La, Chunyang Wen, Linna Feng, Yihui Luo, Di Yun and Wenbo Liu
Nanomaterials 2024, 14(19), 1548; https://doi.org/10.3390/nano14191548 - 25 Sep 2024
Viewed by 1147
Abstract
During the γ phase–δ phase transition, U-50Zr fuel experiences spinodal decomposition, which has a significant effect on fuel properties. However, little is known about the spinodal decomposition of U-50Zr. The spinodal decomposition behavior in U-50Zr is studied in this research using the phase-field [...] Read more.
During the γ phase–δ phase transition, U-50Zr fuel experiences spinodal decomposition, which has a significant effect on fuel properties. However, little is known about the spinodal decomposition of U-50Zr. The spinodal decomposition behavior in U-50Zr is studied in this research using the phase-field approach. The mechanism of spinodal decomposition from a thermodynamic perspective is studied, and the effects of temperature and grain boundary (GB) on spinodal decomposition are analyzed. It is found that the concentration of U atoms in the U-rich phase formed during spinodal decomposition is as high as 90%. The U-rich phase first appears at the GB position, and precipitation phases appear inside the grain later. Ostwald ripening occurs when larger precipitation phases on the GB absorb isolated smaller precipitation phases inside the grain. The coarsening rate of precipitation phases and the time it takes for spinodal decomposition to achieve equilibrium are both influenced by temperature. Full article
(This article belongs to the Section Physical Chemistry at Nanoscale)
Show Figures

Figure 1

22 pages, 48871 KiB  
Article
The Role of Grain Boundary Diffusion in the Solute Drag Effect
by R. K. Koju and Y. Mishin
Nanomaterials 2021, 11(9), 2348; https://doi.org/10.3390/nano11092348 - 10 Sep 2021
Cited by 16 | Viewed by 5188
Abstract
Molecular dynamics (MD) simulations are applied to study solute drag by curvature-driven grain boundaries (GBs) in Cu–Ag solid solution. Although lattice diffusion is frozen on the MD timescale, the GB significantly accelerates the solute diffusion and alters the state of short-range order in [...] Read more.
Molecular dynamics (MD) simulations are applied to study solute drag by curvature-driven grain boundaries (GBs) in Cu–Ag solid solution. Although lattice diffusion is frozen on the MD timescale, the GB significantly accelerates the solute diffusion and alters the state of short-range order in lattice regions swept by its motion. The accelerated diffusion produces a nonuniform redistribution of the solute atoms in the form of GB clusters enhancing the solute drag by the Zener pinning mechanism. This finding points to an important role of lateral GB diffusion in the solute drag effect. A 1.5 at.%Ag alloying reduces the GB free energy by 10–20% while reducing the GB mobility coefficients by more than an order of magnitude. Given the greater impact of alloying on the GB mobility than on the capillary driving force, kinetic stabilization of nanomaterials against grain growth is likely to be more effective than thermodynamic stabilization aiming to reduce the GB free energy. Full article
(This article belongs to the Special Issue Thermal, Mechanical and Radiation Stability of Nanostructured Metals)
Show Figures

Figure 1

13 pages, 3065 KiB  
Article
Analysis of a Lateral Grain Boundary for Reducing Performance Variations in Poly-Si 1T-DRAM
by Songyi Yoo, Wookyung Sun and Hyungsoon Shin
Micromachines 2020, 11(11), 952; https://doi.org/10.3390/mi11110952 - 22 Oct 2020
Cited by 2 | Viewed by 2605
Abstract
A capacitorless one-transistor dynamic random-access memory device that uses a poly-silicon body (poly-Si 1T-DRAM) has been suggested to overcome the scaling limit of conventional one-transistor one-capacitor dynamic random-access memory (1T-1C DRAM). A poly-Si 1T-DRAM cell operates as a memory by utilizing the charge [...] Read more.
A capacitorless one-transistor dynamic random-access memory device that uses a poly-silicon body (poly-Si 1T-DRAM) has been suggested to overcome the scaling limit of conventional one-transistor one-capacitor dynamic random-access memory (1T-1C DRAM). A poly-Si 1T-DRAM cell operates as a memory by utilizing the charge trapped at the grain boundaries (GBs) of its poly-Si body; vertical GBs are formed randomly during fabrication. This paper describes technology computer aided design (TCAD) device simulations performed to investigate the sensing margin and retention time of poly-Si 1T-DRAM as a function of its lateral GB location. The results show that the memory’s operating mechanism changes with the GB’s lateral location because of a corresponding change in the number of trapped electrons or holes. We determined the optimum lateral GB location for the best memory performance by considering both the sensing margin and retention time. We also performed simulations to analyze the effect of a lateral GB on the operation of a poly-Si 1T-DRAM that has a vertical GB. The memory performance of devices without a lateral GB significantly deteriorates when a vertical GB is located near the source or drain junction, while devices with a lateral GB have little change in memory characteristics with different vertical GB locations. This means that poly-Si 1T-DRAM devices with a lateral GB can operate reliably without any memory performance degradation from randomly determined vertical GB locations. Full article
(This article belongs to the Special Issue Micro/Nanoscale Semiconductor Memory Devices)
Show Figures

Figure 1

21 pages, 5049 KiB  
Review
Conductive Atomic Force Microscopy of Semiconducting Transition Metal Dichalcogenides and Heterostructures
by Filippo Giannazzo, Emanuela Schilirò, Giuseppe Greco and Fabrizio Roccaforte
Nanomaterials 2020, 10(4), 803; https://doi.org/10.3390/nano10040803 - 22 Apr 2020
Cited by 42 | Viewed by 10555
Abstract
Semiconducting transition metal dichalcogenides (TMDs) are promising materials for future electronic and optoelectronic applications. However, their electronic properties are strongly affected by peculiar nanoscale defects/inhomogeneities (point or complex defects, thickness fluctuations, grain boundaries, etc.), which are intrinsic of these materials or introduced during [...] Read more.
Semiconducting transition metal dichalcogenides (TMDs) are promising materials for future electronic and optoelectronic applications. However, their electronic properties are strongly affected by peculiar nanoscale defects/inhomogeneities (point or complex defects, thickness fluctuations, grain boundaries, etc.), which are intrinsic of these materials or introduced during device fabrication processes. This paper reviews recent applications of conductive atomic force microscopy (C-AFM) to the investigation of nanoscale transport properties in TMDs, discussing the implications of the local phenomena in the overall behavior of TMD-based devices. Nanoscale resolution current spectroscopy and mapping by C-AFM provided information on the Schottky barrier uniformity and shed light on the mechanisms responsible for the Fermi level pinning commonly observed at metal/TMD interfaces. Methods for nanoscale tailoring of the Schottky barrier in MoS2 for the realization of ambipolar transistors are also illustrated. Experiments on local conductivity mapping in monolayer MoS2 grown by chemical vapor deposition (CVD) on SiO2 substrates are discussed, providing a direct evidence of the resistance associated to the grain boundaries (GBs) between MoS2 domains. Finally, C-AFM provided an insight into the current transport phenomena in TMD-based heterostructures, including lateral heterojunctions observed within MoxW1–xSe2 alloys, and vertical heterostructures made by van der Waals stacking of different TMDs (e.g., MoS2/WSe2) or by CVD growth of TMDs on bulk semiconductors. Full article
Show Figures

Figure 1

Back to TopTop