Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = latent fluorescent probe

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 13561 KiB  
Article
pH-Sensitive Fluorescent Probe in Nanogel Particles as Theragnostic Agent for Imaging and Elimination of Latent Bacterial Cells Residing Inside Macrophages
by Igor D. Zlotnikov, Alexander A. Ezhov, Natalya G. Belogurova and Elena V. Kudryashova
Gels 2024, 10(9), 567; https://doi.org/10.3390/gels10090567 - 30 Aug 2024
Cited by 1 | Viewed by 1567
Abstract
Rhodamine 6G (R6G) and 4-nitro-2,1,3-benzoxadiazole (NBD) linked through a spacer molecule spermidine (spd), R6G-spd-NBD, produces a fluorescent probe with pH-sensitive FRET (Förster (fluorescence) resonance energy transfer) effect that can be useful in a variety of diagnostic applications. Specifically, cancer cells can be spotted [...] Read more.
Rhodamine 6G (R6G) and 4-nitro-2,1,3-benzoxadiazole (NBD) linked through a spacer molecule spermidine (spd), R6G-spd-NBD, produces a fluorescent probe with pH-sensitive FRET (Förster (fluorescence) resonance energy transfer) effect that can be useful in a variety of diagnostic applications. Specifically, cancer cells can be spotted due to a local decrease in pH (Warburg effect). In this research, we applied this approach to intracellular infectious diseases—namely, leishmaniasis, brucellosis, and tuberculosis, difficult to treat because of their localization inside macrophages. R6G-spd-NBD offers an opportunity to detect such bacteria and potentially deliver therapeutic targets to treat them. The nanogel formulation of the R6G-spd-NBD probe (nanoparticles based on chitosan or heparin grafted with lipoic acid residues, Chit-LA and Hep-LA) was obtained to improve the pH sensitivity in the desired pH range (5.5–7.5), providing selective visualization and targeting of bacterial cells, thereby enhancing the capabilities of CLSM (confocal laser scanning microscopy) imaging. According to AFM (atomic force microscopy) data, nanogel particles containing R6G-spd-NBD of compact structure and spherical shape are formed, with a diameter of 70–100 nm. The nanogel formulation of the R6G-spd-NBD further improves absorption and penetration into bacteria, including those located inside macrophages. Due to the negative charge of the bacteria surface, the absorption of positively charged R6G-spd-NBD, and even more so in the chitosan derivatives’ nanogel particles, is pronounced. Additionally, with a pH-sensitive R6G-spd-NBD fluorescent probe, the macrophages’ lysosomes can be easily distinguished due to their acidic pH environment. CLSM was used to visualize samples of macrophage cells containing absorbed bacteria. The created nanoparticles showed a significant selectivity to model E. coli vs. Lactobacillus bacterial cells, and the R6G-spd-NBD agent, being a mild bactericide, cleared over 50% E.coli in conditions where Lactobacillus remained almost unaffected. Taken together, our data indicate that R6G-spd-NBD, as well as similar compounds, can have value not only for diagnostic, but also for theranostic applications. Full article
Show Figures

Figure 1

37 pages, 16775 KiB  
Review
Human NQO1 as a Selective Target for Anticancer Therapeutics and Tumor Imaging
by A. E. M. Adnan Khan, Viswanath Arutla and Kalkunte S. Srivenugopal
Cells 2024, 13(15), 1272; https://doi.org/10.3390/cells13151272 - 29 Jul 2024
Cited by 10 | Viewed by 3687
Abstract
Human NAD(P)H-quinone oxidoreductase1 (HNQO1) is a two-electron reductase antioxidant enzyme whose expression is driven by the NRF2 transcription factor highly active in the prooxidant milieu found in human malignancies. The resulting abundance of NQO1 expression (up to 200-fold) in cancers and a barely [...] Read more.
Human NAD(P)H-quinone oxidoreductase1 (HNQO1) is a two-electron reductase antioxidant enzyme whose expression is driven by the NRF2 transcription factor highly active in the prooxidant milieu found in human malignancies. The resulting abundance of NQO1 expression (up to 200-fold) in cancers and a barely detectable expression in body tissues makes it a selective marker of neoplasms. NQO1 can catalyze the repeated futile redox cycling of certain natural and synthetic quinones to their hydroxyquinones, consuming NADPH and generating rapid bursts of cytotoxic reactive oxygen species (ROS) and H2O2. A greater level of this quinone bioactivation due to elevated NQO1 content has been recognized as a tumor-specific therapeutic strategy, which, however, has not been clinically exploited. We review here the natural and new quinones activated by NQO1, the catalytic inhibitors, and the ensuing cell death mechanisms. Further, the cancer-selective expression of NQO1 has opened excellent opportunities for distinguishing cancer cells/tissues from their normal counterparts. Given this diagnostic, prognostic, and therapeutic importance, we and others have engineered a large number of specific NQO1 turn-on small molecule probes that remain latent but release intense fluorescence groups at near-infrared and other wavelengths, following enzymatic cleavage in cancer cells and tumor masses. This sensitive visualization/quantitation and powerful imaging technology based on NQO1 expression offers promise for guided cancer surgery, and the reagents suggest a theranostic potential for NQO1-targeted chemotherapy. Full article
(This article belongs to the Section Cellular Pathology)
Show Figures

Figure 1

13 pages, 317 KiB  
Article
Comparison of the Diagnostic Accuracy of Three Real-Time PCR Assays for the Detection of Arcobacter butzleri in Human Stool Samples Targeting Different Genes in a Test Comparison without a Reference Standard
by Ramona Binder, Andreas Hahn, Kirsten Alexandra Eberhardt, Ralf Matthias Hagen, Holger Rohde, Ulrike Loderstädt, Torsten Feldt, Fred Stephen Sarfo, Veronica Di Cristanziano, Sascha Kahlfuss, Hagen Frickmann and Andreas Erich Zautner
Microorganisms 2023, 11(5), 1313; https://doi.org/10.3390/microorganisms11051313 - 17 May 2023
Viewed by 1876
Abstract
Potential etiological relevance for gastroenteric disorders including diarrhea has been assigned to Arcobacter butzleri. However, standard routine diagnostic algorithms for stool samples of patients with diarrhea are rarely adapted to the detection of this pathogen and so, A. butzleri is likely to [...] Read more.
Potential etiological relevance for gastroenteric disorders including diarrhea has been assigned to Arcobacter butzleri. However, standard routine diagnostic algorithms for stool samples of patients with diarrhea are rarely adapted to the detection of this pathogen and so, A. butzleri is likely to go undetected unless it is specifically addressed, e.g., by applying pathogen-specific molecular diagnostic approaches. In the study presented here, we compared three real-time PCR assays targeting the genes hsp60, rpoB/C (both hybridization probe assays) and gyrA (fluorescence resonance energy transfer assay) of A. butzleri in a test comparison without a reference standard using a stool sample collection with a high pretest probability from the Ghanaian endemicity setting. Latent class analysis was applied with the PCR results obtained with a collection of 1495 stool samples showing no signs of PCR inhibition to assess the real-time PCR assays’ diagnostic accuracy. Calculated sensitivity and specificity were 93.0% and 96.9% for the hsp60-PCR, 100% and 98.2% for the rpoB/C-PCR, as well as 12.7% and 99.8% for the gyrA-PCR, respectively. The calculated A. butzleri prevalence within the assessed Ghanaian population was 14.7%. As indicated by test results obtained with high-titer spiked samples, cross-reactions of the hsp60-assay and rpoB/C-assay with phylogenetically related species such as A. cryaerophilus can occur but are less likely with phylogenetically more distant species like, e.g., A. lanthieri. In conclusion, the rpoB/C-assay showed the most promising performance characteristics as the only assay with sensitivity >95%, albeit associated with a broad 95%-confidence interval. In addition, this assay showed still-acceptable specificity of >98% in spite of the known cross-reactivity with phylogenetically closely related species such as A. cryaerophilus. If higher certainty is desired, the gyrA-assay with specificity close to 100% can be applied for confirmation testing with samples showing positive rpoB/C-PCR results. However, in case of a negative result in the gyrA-assay, this cannot reliably exclude the detection of A. butzleri in the rpoB/C-assay due to the gyrA-assay’s very low sensitivity. Full article
11 pages, 4651 KiB  
Opinion
Stimuli-Responsible SNARF Derivatives as a Latent Ratiometric Fluorescent Probe
by Eiji Nakata, Khongorzul Gerelbaatar, Futa Komatsubara and Takashi Morii
Molecules 2022, 27(21), 7181; https://doi.org/10.3390/molecules27217181 - 24 Oct 2022
Cited by 8 | Viewed by 2075
Abstract
Fluorescence imaging is a powerful technique for continuous observation of dynamic intracellular processes of living cells. Fluorescent probes bearing a fluorescence switching property associated with a specific recognition or reaction of target biomolecule, that is, stimuli-responsibility, are important for fluorescence imaging. Thus, fluorescent [...] Read more.
Fluorescence imaging is a powerful technique for continuous observation of dynamic intracellular processes of living cells. Fluorescent probes bearing a fluorescence switching property associated with a specific recognition or reaction of target biomolecule, that is, stimuli-responsibility, are important for fluorescence imaging. Thus, fluorescent probes continue to be developed to support approaches with different design strategies. When compared with simple intensity-changing fluorescent probes, ratiometric fluorescent probes typically offer the advantage of less sensitivity to errors associated with probe concentration, photobleaching, and environmental effects. For intracellular usage, ratiometric fluorescent probes based on small molecules must be loaded into the cells. Thus, probes having intrinsic fluorescence may obscure a change in intracellular signal if the background fluorescence of the remaining extracellular probes is high. To overcome such disadvantages, it is necessary to minimize the extracellular background fluorescence of fluorescent probes. Here, the design strategy of the latent ratiometric fluorescent probe for wash-free ratiometric imaging using a xanthene dye seminapthorhodafluor (SNARF) as the scaffold of fluorophore is discussed. Full article
(This article belongs to the Special Issue Stimuli-Responsive Molecules for Biological Applications)
Show Figures

Figure 1

11 pages, 15633 KiB  
Article
Improving Minutiae Image of Latent Fingerprint Detection on Non-Porous Surface Materials under UV Light Using Sulfur Doped Carbon Quantum Dots from Magnolia Grandiflora Flower
by David Nugroho, Won-Chun Oh, Saksit Chanthai and Rachadaporn Benchawattananon
Nanomaterials 2022, 12(19), 3277; https://doi.org/10.3390/nano12193277 - 21 Sep 2022
Cited by 21 | Viewed by 3115
Abstract
In this study, carbon quantum dots (CQDs) from Magnolia Grandiflora flower as a carbon precursor were obtained using a hydrothermal method under the optimized conditions affected by various heating times (14, 16, 18, and 20 min) and various electric power inputs (900–1400 W). [...] Read more.
In this study, carbon quantum dots (CQDs) from Magnolia Grandiflora flower as a carbon precursor were obtained using a hydrothermal method under the optimized conditions affected by various heating times (14, 16, 18, and 20 min) and various electric power inputs (900–1400 W). Then, hydrogen sulfide (H2S) was added to dope the CQDs under the same manner. The aqueous solution of the S-CQDs were characterized by FTIR, XPS, EDX/SEM, and TEM, with nanoparticle size at around 4 nm. Then, the as-prepared S-CQDs were successfully applied with fine corn starch for detection of minutiae latent fingerprints on non-porous surface materials. It is demonstrated that the minutiae pattern is more clearly seen under commercial UV lamps with a bright blue fluorescence intensity. Therefore, this research has proved that the S-CQDs derived from plant material have a better potential as fluorescent probes for latent fingerprint detection. Full article
Show Figures

Graphical abstract

20 pages, 7575 KiB  
Review
A Robust Bioassay of the Human Bradykinin B2 Receptor That Extends Molecular and Cellular Studies: The Isolated Umbilical Vein
by François Marceau and Hélène Bachelard
Pharmaceuticals 2021, 14(3), 177; https://doi.org/10.3390/ph14030177 - 24 Feb 2021
Cited by 3 | Viewed by 3047
Abstract
Bradykinin (BK) has various physiological and pathological roles. Medicinal chemistry efforts targeted toward the widely expressed BK B2 receptor (B2R), a G-protein-coupled receptor, were primarily aimed at developing antagonists. The only B2R antagonist in clinical use is the [...] Read more.
Bradykinin (BK) has various physiological and pathological roles. Medicinal chemistry efforts targeted toward the widely expressed BK B2 receptor (B2R), a G-protein-coupled receptor, were primarily aimed at developing antagonists. The only B2R antagonist in clinical use is the peptide icatibant, approved to abort attacks of hereditary angioedema. However, the anti-inflammatory applications of B2R antagonists are potentially wider. Furthermore, the B2R antagonists notoriously exhibit species-specific pharmacological profiles. Classical smooth muscle contractility assays are exploited over a time scale of several hours and support determining potency, competitiveness, residual agonist activity, specificity, and reversibility of pharmacological agents. The contractility assay based on the isolated human umbilical vein, expressing B2R at physiological density, was introduced when investigating the first non-peptide B2R antagonist (WIN 64338). Small ligand molecules characterized using the assay include the exquisitely potent competitive antagonist, Pharvaris Compound 3 or the partial agonist Fujisawa Compound 47a. The umbilical vein assay is also useful to verify pharmacologic properties of special peptide B2R ligands, such as the carboxypeptidase-activated latent agonists and fluorescent probes. Furthermore, the proposed agonist effect of tissue kallikrein on the B2R has been disproved using the vein. This assay stands in between cellular and molecular pharmacology and in vivo studies. Full article
Show Figures

Figure 1

Back to TopTop