Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = latency-associated nuclear antigen 1 (LANA-1)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 5226 KB  
Article
Latently KSHV-Infected Cells Promote Further Establishment of Latency upon Superinfection with KSHV
by Chen Gam ze Letova, Inna Kalt, Meir Shamay and Ronit Sarid
Int. J. Mol. Sci. 2021, 22(21), 11994; https://doi.org/10.3390/ijms222111994 - 5 Nov 2021
Cited by 4 | Viewed by 2979
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) is a cancer-related virus which engages in two forms of infection: latent and lytic. Latent infection allows the virus to establish long-term persistent infection, whereas the lytic cycle is needed for the maintenance of the viral reservoir and for [...] Read more.
Kaposi’s sarcoma-associated herpesvirus (KSHV) is a cancer-related virus which engages in two forms of infection: latent and lytic. Latent infection allows the virus to establish long-term persistent infection, whereas the lytic cycle is needed for the maintenance of the viral reservoir and for virus spread. By using recombinant KSHV viruses encoding mNeonGreen and mCherry fluorescent proteins, we show that various cell types that are latently-infected with KSHV can be superinfected, and that the new incoming viruses establish latent infection. Moreover, we show that latency establishment is enhanced in superinfected cells compared to primary infected ones. Further analysis revealed that cells that ectopically express the major latency protein of KSHV, LANA-1, prior to and during infection exhibit enhanced establishment of latency, but not cells expressing LANA-1 fragments. This observation supports the notion that the expression level of LANA-1 following infection determines the efficiency of latency establishment and avoids loss of viral genomes. These findings imply that a host can be infected with more than a single viral genome and that superinfection may support the maintenance of long-term latency. Full article
(This article belongs to the Special Issue Herpesviruses and Their Host Cells: EBV- and KSHV-Associated Diseases)
Show Figures

Figure 1

14 pages, 4295 KB  
Article
Biophysical Screens Identify Fragments That Bind to the Viral DNA-Binding Proteins EBNA1 and LANA
by Troy E. Messick, Lois Tolvinski, Edward R. Zartler, Anna Moberg, Åsa Frostell, Garry R. Smith, Allen B. Reitz and Paul M. Lieberman
Molecules 2020, 25(7), 1760; https://doi.org/10.3390/molecules25071760 - 10 Apr 2020
Cited by 13 | Viewed by 5453
Abstract
The human gamma-herpesviruses Epstein–Barr virus (EBV) (HHV-4) and Kaposi’s sarcoma-associated herpesvirus (KSHV) (HHV-8) are responsible for a number of diseases, including various types of cancer. Epstein–Barr nuclear antigen 1 (EBNA1) from EBV and latency-associated nuclear antigen (LANA) from KSHV are viral-encoded DNA-binding proteins [...] Read more.
The human gamma-herpesviruses Epstein–Barr virus (EBV) (HHV-4) and Kaposi’s sarcoma-associated herpesvirus (KSHV) (HHV-8) are responsible for a number of diseases, including various types of cancer. Epstein–Barr nuclear antigen 1 (EBNA1) from EBV and latency-associated nuclear antigen (LANA) from KSHV are viral-encoded DNA-binding proteins that are essential for the replication and maintenance of their respective viral genomes during latent, oncogenic infection. As such, EBNA1 and LANA are attractive targets for the development of small-molecule inhibitors. To this end, we performed a biophysical screen of EBNA1 and LANA using a fragment library by saturation transfer difference (STD)–NMR spectroscopy and surface plasmon resonance (SPR). We identified and validated a number of unique fragment hits that bind to EBNA1 or LANA. We also determined the high-resolution crystal structure of one fragment bound to EBNA1. Results from this screening cascade provide new chemical starting points for the further development of potent inhibitors for this class of viral proteins. Full article
(This article belongs to the Special Issue Fragment Based Drug Discovery)
Show Figures

Graphical abstract

7 pages, 732 KB  
Communication
Transcriptome Analysis and In Situ Hybridization for FcaGHV1 in Feline Lymphoma
by Mahdis Aghazadeh, Mang Shi, Patricia A. Pesavento, Amy C. Durham, Tamsen Polley, Shannon L. Donahoe, Ryan M. Troyer, Vanessa R. Barrs, Edward C. Holmes and Julia A. Beatty
Viruses 2018, 10(9), 464; https://doi.org/10.3390/v10090464 - 30 Aug 2018
Cited by 8 | Viewed by 4706
Abstract
Lymphoma is one of the most common malignancies in domestic cats. The lymphomagenic potential of Felis catus gammaherpesvirus 1 (FcaGHV1), a common infection in domestic cats, is unknown. In other species, including humans, cellular transformation by gammaherpesviruses is typically mediated by viral genes [...] Read more.
Lymphoma is one of the most common malignancies in domestic cats. The lymphomagenic potential of Felis catus gammaherpesvirus 1 (FcaGHV1), a common infection in domestic cats, is unknown. In other species, including humans, cellular transformation by gammaherpesviruses is typically mediated by viral genes expressed during latency. We analysed tumour RNA, from diffuse large B-cell lymphomas (DLBCL) appearing in cats coinfected with FcaGHV1 and feline immunodeficiency virus (FIV) (n = 10), by high throughput transcriptome sequencing and reverse transcription PCR. A limited repertoire of FcaGHV transcripts was identified in five tumors, including homologs of oncogenic latency-associated transcripts, latency-associated nuclear antigen (LANA, ORF73) and vFLIP (F7), lytic genes (ORF50, ORF6, ORF59, F10), and an ORF unique to FcaGHV1, F20. In situ hybridization of FIV-associated DLBCLs (n = 9), post-transplant lymphomas (n = 6) and high-grade B and T-cell intestinal lymphomas (n = 8) identified a single case in which FcaGHV1 nucleic acid was detectable. These results demonstrate that FcaGHV1 transcripts can be detected in some FIV-associated lymphomas, but at low copy number, precluding assessment of a potential role for FcaGHV1 in lymphomagenesis. Future investigation of the FcaGHV1 transcriptome in clinical samples might employ viral enrichment and greater sequencing depth to enhance the retrieval of viral reads. Our results suggest prioritization of a subset of intestinal T-cell tumors, large granular lymphocyte lymphoma, for study. Full article
(This article belongs to the Special Issue Nonprimate Lentivirus)
Show Figures

Figure 1

Back to TopTop