Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = laser-controlled precession

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 1078 KiB  
Article
Relativistic Effects for a Hydrogen Rydberg Atom in a High-Frequency Laser Field: Analytical Results
by Nikolay Kryukov and Eugene Oks
Foundations 2022, 2(1), 105-113; https://doi.org/10.3390/foundations2010005 - 10 Jan 2022
Viewed by 2560
Abstract
Previously published analytical results for the effects of a high-frequency laser field on hydrogen Rydberg atoms demonstrated that the unperturbed elliptical orbit of the Rydberg electron, generally is engaged simultaneously in the precession of the orbital plane about the direction of the laser [...] Read more.
Previously published analytical results for the effects of a high-frequency laser field on hydrogen Rydberg atoms demonstrated that the unperturbed elliptical orbit of the Rydberg electron, generally is engaged simultaneously in the precession of the orbital plane about the direction of the laser field and in the precession within the orbital plane. These results were obtained while disregarding relativistic effects. In the present paper, we analyze the relativistic effect for hydrogenic Rydberg atoms or ions in a high-frequency linearly- or circularly-polarized laser field, the effect being an additional precession of the electron orbit in its own plane. For the linearly-polarized laser field, the general case, where the electron orbit is not perpendicular to the direction of the laser field, we showed that the precession of the electron orbit within its plane can vanish at some critical polar angle θc of the orbital plane. We calculated analytically the dependence of the critical angle on the angular momentum of the electron and on the parameters of the laser field. Finally, for the particular situation, where the electron orbit is perpendicular to the direction of the laser field, we demonstrated that the relativistic precession and the precession due to the laser field occur in the opposite directions. As a result, the combined effect of these two kinds of the precession is smaller than the absolute value of each of them. We showed that by varying the ratio of the laser field strength F to the square of the laser field frequency ω, one can control the precession frequency of the electron orbit and even make the precession vanish, so that the elliptical orbit of the electron would become stationary. This is a counterintuitive result. Full article
(This article belongs to the Special Issue Advances in Fundamental Physics)
Show Figures

Figure 1

10 pages, 1507 KiB  
Article
Ultrafast Modulation of Magnetization Dynamics in Ferromagnetic (Ga, Mn)As Thin Films
by Hang Li, Xinhui Zhang, Xinyu Liu, Margaret Dobrowolska and Jacek K. Furdyna
Appl. Sci. 2018, 8(10), 1880; https://doi.org/10.3390/app8101880 - 11 Oct 2018
Cited by 1 | Viewed by 3081
Abstract
Magnetization precession induced by linearly polarized optical excitation in ferromagnetic (Ga,Mn)As was studied by time-resolved magneto-optical Kerr effect measurements. The superposition of thermal and non-thermal effects arising from the laser pulses complicates the analysis of magnetization precession in terms of magnetic anisotropy fields. [...] Read more.
Magnetization precession induced by linearly polarized optical excitation in ferromagnetic (Ga,Mn)As was studied by time-resolved magneto-optical Kerr effect measurements. The superposition of thermal and non-thermal effects arising from the laser pulses complicates the analysis of magnetization precession in terms of magnetic anisotropy fields. To obtain insight into these processes, we investigated compressively-strained thin (Ga,Mn)As films using ultrafast optical excitation above the band gap as a function of pulse intensity. Data analyses with the gyromagnetic calculation based on Landau-Lifshitz-Gilbert equation combined with two different magneto-optical effects shows the non-equivalent effects of in-plane and out-of-plane magnetic anisotropy fields on both the amplitude and the frequency of magnetization precession, thus providing a handle for separating the effects of non-thermal and thermal processes in this context. Our results show that the effect of photo-generated carriers on magnetic anisotropy constitutes a particularly effective mechanism for controlling both the frequency and amplitude of magnetization precession, thus suggesting the possibility of non-thermal manipulation of spin dynamics through pulsed laser excitations. Full article
(This article belongs to the Special Issue Optics in Spintronic Materials)
Show Figures

Figure 1

Back to TopTop