Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (54)

Search Parameters:
Keywords = laser-assisted etching

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4062 KB  
Article
Laser Truncation of Silicon Nanowires Fabricated by Ag-Assisted Chemical Etching for Reliable Electrode Deposition in Solar Cells
by Grażyna Kulesza-Matlak, Ewa Sarna, Tomasz Kukulski, Anna Sypień, Mariusz Kuglarz and Kazimierz Drabczyk
Appl. Sci. 2025, 15(24), 12873; https://doi.org/10.3390/app152412873 - 5 Dec 2025
Viewed by 181
Abstract
Silicon nanowires (SiNWs) fabricated by Ag-assisted metal-assisted chemical etching (MACE) exhibit excellent light-trapping performance, yet their fragile high-aspect-ratio morphology severely limits reliable metallization in photovoltaic devices. Conventional electrode deposition methods often fail on dense SiNW arrays due to poor mechanical stability of the [...] Read more.
Silicon nanowires (SiNWs) fabricated by Ag-assisted metal-assisted chemical etching (MACE) exhibit excellent light-trapping performance, yet their fragile high-aspect-ratio morphology severely limits reliable metallization in photovoltaic devices. Conventional electrode deposition methods often fail on dense SiNW arrays due to poor mechanical stability of the nanowire tips, leading to delamination, inhomogeneous coverage, and high contact resistance. In this work, we introduce a maskless laser-based truncation technique that selectively shortens MACE-derived SiNWs to controlled residual heights of 300–500 nm exclusively within the regions intended for electrode formation, while preserving the full nanowire morphology in active areas. A detailed parametric study of laser power, scanning speed, and pulse repetition frequency allowed the identification of an optimal processing window enabling controlled tip melting without damaging the nanowire roots or the crystalline silicon substrate. High-resolution SEM imaging confirms uniform planarization, well-preserved structural integrity, and the absence of subsurface defects in the laser-processed tracks. Optical reflectance measurements further demonstrate that introducing 2% and 5% truncated surface fractions—corresponding to the minimum and maximum metallized front-grid coverage in industrial Si solar cells—results in only a minimal reflectance increase, preserving the advantageous the light-trapping behavior of the SiNW texture. The proposed laser truncation approach provides a clean, scalable, and industrially compatible route toward creating electrode-ready surfaces on nanostructured silicon, enabling reliable metallization while maintaining optical performance. This method offers strong potential for integration into silicon photovoltaics, photodetectors, and nanoscale electronic and sensing devices. Full article
(This article belongs to the Special Issue Advances in Manufacturing and Machining Processes)
Show Figures

Figure 1

22 pages, 2446 KB  
Review
Ultrafast Laser-Enabled 3D Glass Microchannel Reactors
by Xiaolong Li, Jinxin Huang, Jian Xu and Ya Cheng
Sensors 2025, 25(23), 7159; https://doi.org/10.3390/s25237159 - 24 Nov 2025
Viewed by 473
Abstract
Microchannel reactors are among the most important tools used for high-performance continuous-flow synthesis. However, most microchannel reactors manufactured with conventional micromachining techniques are limited to two-dimensional (2D) planar geometries, which pose significant challenges for the custom production of three-dimensional (3D) architectures that offer [...] Read more.
Microchannel reactors are among the most important tools used for high-performance continuous-flow synthesis. However, most microchannel reactors manufactured with conventional micromachining techniques are limited to two-dimensional (2D) planar geometries, which pose significant challenges for the custom production of three-dimensional (3D) architectures that offer superior microchemical performance. Using unique nonlinear optical effects of ultrafast lasers, hollow microchannel structures with 3D configurations can be flexibly created within transparent glass materials through either direct removal or subsequent chemical etching methods. This review provides an overview of typical fabrication techniques for 3D glass microchannel reactors based on ultrafast laser microfabrication, as well as their state-of-the-art advancements, including large-scale and high-precision manufacture of all-glass microchannels and the facile integration of online monitoring modules. Moreover, the applications of these fabricated microchannel reactors for various continuous-flow microchemical reactions are introduced. Ultrafast laser-enabled 3D glass microchannel reactors hold great potential for developing innovative and industrial-scale continuous-flow manufacturing processes in chemical engineering and pharmaceutical production. Full article
(This article belongs to the Special Issue Feature Review Papers in Optical Sensors)
Show Figures

Figure 1

19 pages, 2469 KB  
Article
Tuning Multi-Wavelength Reflection Properties of Porous Silicon Bragg Reflectors Using Silver-Nanoparticle-Assisted Electrochemical Etching
by Sheng-Yang Huang, Hsiao-Han Hsu, Amal Muhammed Musthafa, I-An Lin, Chia-Man Chou and Vincent K. S. Hsiao
Micromachines 2025, 16(11), 1198; https://doi.org/10.3390/mi16111198 - 22 Oct 2025
Cited by 1 | Viewed by 590
Abstract
This study proposes an innovative silver-nanoparticle-assisted electrochemical etching method for the fabrication of porous silicon Bragg reflectors with multi-wavelength reflection characteristics. By introducing silver nanoparticles at varying concentrations (0.1–10 mg/mL) into the conventional HF–ethanol electrolyte and applying periodically modulated current densities (40/100 mA/cm [...] Read more.
This study proposes an innovative silver-nanoparticle-assisted electrochemical etching method for the fabrication of porous silicon Bragg reflectors with multi-wavelength reflection characteristics. By introducing silver nanoparticles at varying concentrations (0.1–10 mg/mL) into the conventional HF–ethanol electrolyte and applying periodically modulated current densities (40/100 mA/cm2), the transition from single-peak to multi-peak reflection spectra was successfully achieved. The results demonstrate that at a concentration of 10 mg/mL silver nanoparticles, up to four distinct reflection bands can be obtained. A systematic investigation was conducted on the influence of etching cycles (4–20 cycles) and silver nanoparticle concentration on the optical performance and microstructure. SEM analysis revealed well-defined periodic multilayer structures, while XPS analysis confirmed the presence of metallic silver on the porous silicon surface. This work provides a simple, controllable, and cost-effective approach to the development of multifunctional photonic devices, with promising applications in laser optics, solar cells, chemical sensing, and surface-enhanced Raman scattering. Full article
(This article belongs to the Special Issue Micro-Nano Photonics: From Design and Fabrication to Application)
Show Figures

Figure 1

19 pages, 3793 KB  
Article
Controlled Nanopore Fabrication on Silicon via Surface Plasmon Polariton-Induced Laser Irradiation of Metal–Insulator–Metal Structured Films
by Sifan Huo, Sipeng Luo, Ruishen Wang, Jingnan Zhao, Wenfeng Miao, Zhiquan Guo and Yuanchen Cui
Coatings 2025, 15(10), 1187; https://doi.org/10.3390/coatings15101187 - 10 Oct 2025
Viewed by 1022
Abstract
In this study, we present a cost-effective approach for fabricating nanopores on single-crystal silicon using a silver–alumina–silver (Ag/AAO/Ag) metal–insulator–metal (MIM) structured mask. Self-ordered porous anodic aluminum oxide (AAO) films were prepared via two-step anodization and coated with silver layers on both sides to [...] Read more.
In this study, we present a cost-effective approach for fabricating nanopores on single-crystal silicon using a silver–alumina–silver (Ag/AAO/Ag) metal–insulator–metal (MIM) structured mask. Self-ordered porous anodic aluminum oxide (AAO) films were prepared via two-step anodization and coated with silver layers on both sides to form the MIM structure. When irradiated with a 532 nm nanosecond laser, the MIM mask excites surface plasmon polaritons (SPPs), resulting in a localized field enhancement that enables the etching of nanopores into the silicon substrate. This method successfully produced nanopores with diameters as small as 50 nm and depths up to 28 nm. The laser-induced SPP-assisted machining significantly enhances the specific surface area of the processed surface, making it promising for applications in catalysis, biosensing, and microcantilever-based devices. For instance, an increased surface area can improve catalytic efficiency by providing more active sites, and enhance sensor sensitivity by amplifying response signals. Compared to conventional lithographic or focused ion beam techniques, this method offers simplicity, low cost, and scalability. The proposed technique demonstrates a practical and efficient route for the large-area subwavelength nanostructuring of silicon surfaces. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

35 pages, 30622 KB  
Review
Nanotopographical Features of Polymeric Nanocomposite Scaffolds for Tissue Engineering and Regenerative Medicine: A Review
by Kannan Badri Narayanan
Biomimetics 2025, 10(5), 317; https://doi.org/10.3390/biomimetics10050317 - 15 May 2025
Cited by 2 | Viewed by 2541
Abstract
Nanotopography refers to the intricate surface characteristics of materials at the sub-micron (<1000 nm) and nanometer (<100 nm) scales. These topographical surface features significantly influence the physical, chemical, and biological properties of biomaterials, affecting their interactions with cells and surrounding tissues. The development [...] Read more.
Nanotopography refers to the intricate surface characteristics of materials at the sub-micron (<1000 nm) and nanometer (<100 nm) scales. These topographical surface features significantly influence the physical, chemical, and biological properties of biomaterials, affecting their interactions with cells and surrounding tissues. The development of nanostructured surfaces of polymeric nanocomposites has garnered increasing attention in the fields of tissue engineering and regenerative medicine due to their ability to modulate cellular responses and enhance tissue regeneration. Various top-down and bottom-up techniques, including nanolithography, etching, deposition, laser ablation, template-assisted synthesis, and nanografting techniques, are employed to create structured surfaces on biomaterials. Additionally, nanotopographies can be fabricated using polymeric nanocomposites, with or without the integration of organic and inorganic nanomaterials, through advanced methods such as using electrospinning, layer-by-layer (LbL) assembly, sol–gel processing, in situ polymerization, 3D printing, template-assisted methods, and spin coating. The surface topography of polymeric nanocomposite scaffolds can be tailored through the incorporation of organic nanomaterials (e.g., chitosan, dextran, alginate, collagen, polydopamine, cellulose, polypyrrole) and inorganic nanomaterials (e.g., silver, gold, titania, silica, zirconia, iron oxide). The choice of fabrication technique depends on the desired surface features, material properties, and specific biomedical applications. Nanotopographical modifications on biomaterials’ surface play a crucial role in regulating cell behavior, including adhesion, proliferation, differentiation, and migration, which are critical for tissue engineering and repair. For effective tissue regeneration, it is imperative that scaffolds closely mimic the native extracellular matrix (ECM), providing a mechanical framework and topographical cues that replicate matrix elasticity and nanoscale surface features. This ECM biomimicry is vital for responding to biochemical signaling cues, orchestrating cellular functions, metabolic processes, and subsequent tissue organization. The integration of nanotopography within scaffold matrices has emerged as a pivotal regulator in the development of next-generation biomaterials designed to regulate cellular responses for enhanced tissue repair and organization. Additionally, these scaffolds with specific surface topographies, such as grooves (linear channels that guide cell alignment), pillars (protrusions), holes/pits/dots (depressions), fibrous structures (mimicking ECM fibers), and tubular arrays (array of tubular structures), are crucial for regulating cell behavior and promoting tissue repair. This review presents recent advances in the fabrication methodologies used to engineer nanotopographical microenvironments in polymeric nanocomposite tissue scaffolds through the incorporation of nanomaterials and biomolecular functionalization. Furthermore, it discusses how these modifications influence cellular interactions and tissue regeneration. Finally, the review highlights the challenges and future perspectives in nanomaterial-mediated fabrication of nanotopographical polymeric scaffolds for tissue engineering and regenerative medicine. Full article
(This article belongs to the Special Issue Advances in Biomaterials, Biocomposites and Biopolymers 2025)
Show Figures

Figure 1

13 pages, 4052 KB  
Article
Fabrication of Superhydrophobic Surfaces from Laser-Induced Graphene and Their Photothermally Driven Properties
by Yue Zhao, Yonghui Zhang, Yang Chen, Haodong Fu, Hao Liu, Jinlong Song and Xin Liu
Materials 2025, 18(8), 1880; https://doi.org/10.3390/ma18081880 - 21 Apr 2025
Viewed by 2926
Abstract
Conventional LIG preparation mostly relies on the ablation process of a CO2 laser on a polyimide (PI) substrate but is limited by the sensitivity of the laser parameters, which is prone to PI film deformation, non-uniformity of the process, or LIG surface [...] Read more.
Conventional LIG preparation mostly relies on the ablation process of a CO2 laser on a polyimide (PI) substrate but is limited by the sensitivity of the laser parameters, which is prone to PI film deformation, non-uniformity of the process, or LIG surface breakage problems. In this study, we present a new method to fabricate superhydrophobic laser-induced graphene (SH-LIG) surfaces by immobilizing the polyimide (PI) film on the copper sheet, which enables uniform laser processing (single pass laser etching) over a wider range of microsecond laser parameters (10.5–19.5 W). Subsequently, the SH-LIG was obtained by vacuum-assisted immersion in stearic acid, resulting in a water contact angle greater than 150°, roll angle stabilized at 6°, and hydrophobic stability at a high temperature of 90 °C. Analysis by Raman spectroscopy (Raman), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) showed that the LIG fabricated at optimal power (19.5 W) had a more developed C sp2 network (I2D/IG ≈ 0.5) and pore structure, which significantly improved the photothermal conversion efficiency (up to 252 °C in air and 180 °C on water). On this basis, a simple micro-driver based on SH-LIG was designed. Experiments showed that the maximum velocity of the SH-LIG boat can reach an adjustable propulsion velocity of 45.6 mm/s (related to the laser processing power and the intensity of the driving light), which is 132% higher than that of the LIG boat. This work provides insights into the preparation of high-quality LIG and their application in photothermally driven micro actuators, highlighting the synergies between structural optimization, surface engineering, and photothermal performance. Full article
(This article belongs to the Special Issue Recent Advances in Advanced Laser Processing Technologies)
Show Figures

Graphical abstract

19 pages, 3453 KB  
Article
Microfluidic Device on Fused Silica for Raman Spectroscopy of Liquid Samples
by Celia Gómez-Galdós, Andrea Perez-Asensio, María Gabriela Fernández-Manteca, Borja García García, José Francisco Algorri, José Miguel López-Higuera, Luis Rodríguez-Cobo and Adolfo Cobo
Biosensors 2025, 15(3), 172; https://doi.org/10.3390/bios15030172 - 6 Mar 2025
Viewed by 2370
Abstract
Water testing is becoming increasingly important due to dangerous phenomena such as Harmful Algal Blooms (HABs). Commonly, the content of a water sample is measured for the detection, monitoring and control of these events. Raman spectroscopy is a technique for the molecular characterization [...] Read more.
Water testing is becoming increasingly important due to dangerous phenomena such as Harmful Algal Blooms (HABs). Commonly, the content of a water sample is measured for the detection, monitoring and control of these events. Raman spectroscopy is a technique for the molecular characterization of materials in solid, liquid or gaseous form, which makes it an attractive method for analysing materials’ components. However, Raman scattering is a weak optical process and requires an accurate system for detection. In our work, we present, from design to fabrication, a microfluidic device on fused silica adapted to optimise the Raman spectrum of liquid samples when using a Raman probe. The device features a portable design for rapid on-site continuous flow measurements avoiding the use of large, costly and complex laboratory equipment. The main manufacturing technique used was ultrafast laser-assisted etching (ULAE). Finally, the effectiveness of the microfluidic device was demonstrated by comparing the Raman spectra of a known species of cyanobacteria with those obtained using other conventional substrates in laboratory analysis. The results demonstrate that the microfluidic device, under continuous flow conditions, exhibited a lower standard deviation of the Raman signal, reduced background noise and avoided signal variations caused by sample drying in static measurements. Full article
(This article belongs to the Special Issue Biosensors Based on Microfluidic Devices—2nd Edition)
Show Figures

Figure 1

12 pages, 2636 KB  
Article
MoTe2 Photodetector for Integrated Lithium Niobate Photonics
by Qiaonan Dong, Xinxing Sun, Lang Gao, Yong Zheng, Rongbo Wu and Ya Cheng
Nanomaterials 2025, 15(1), 72; https://doi.org/10.3390/nano15010072 - 5 Jan 2025
Cited by 6 | Viewed by 2131
Abstract
The integration of a photodetector that converts optical signals into electrical signals is essential for scalable integrated lithium niobate photonics. Two-dimensional materials provide a potential high-efficiency on-chip detection capability. Here, we demonstrate an efficient on-chip photodetector based on a few layers of MoTe [...] Read more.
The integration of a photodetector that converts optical signals into electrical signals is essential for scalable integrated lithium niobate photonics. Two-dimensional materials provide a potential high-efficiency on-chip detection capability. Here, we demonstrate an efficient on-chip photodetector based on a few layers of MoTe2 on a thin film lithium niobate waveguide and integrate it with a microresonator operating in an optical telecommunication band. The lithium-niobate-on-insulator waveguides and micro-ring resonator are fabricated using the femtosecond laser photolithography-assisted chemical–mechanical etching method. The lithium niobate waveguide-integrated MoTe2 presents an absorption coefficient of 72% and a transmission loss of 0.27 dB µm−1 at 1550 nm. The on-chip photodetector exhibits a responsivity of 1 mA W−1 at a bias voltage of 20 V, a low dark current of 1.6 nA, and a photo–dark current ratio of 108 W−1. Due to effective waveguide coupling and interaction with MoTe2, the generated photocurrent is approximately 160 times higher than that of free-space light irradiation. Furthermore, we demonstrate a wavelength-selective photonic device by integrating the photodetector and micro-ring resonator with a quality factor of 104 on the same chip, suggesting potential applications in the field of on-chip spectrometers and biosensors. Full article
(This article belongs to the Section Nanofabrication and Nanomanufacturing)
Show Figures

Figure 1

12 pages, 3517 KB  
Article
Bone Integration of Femtosecond Laser-Treated Dental Implants with Nanostructured Surfaces: A Controlled Animal Study
by Woo-Seok Do, Keun-Ba-Da Son, Young-Tak Son, Yong-Gun Kim, Sung-Min Hwang, Jun-Ho Hwang, Jong-Hoon Lee, Hyun-Deok Kim, Kyu-Bok Lee and Jae-Mok Lee
Appl. Sci. 2024, 14(23), 10913; https://doi.org/10.3390/app142310913 - 25 Nov 2024
Cited by 1 | Viewed by 1737
Abstract
Background: The purpose of this study is to compare bone union and soft-tissue healing in titanium implants with sandblasted, large-grit, acid-etched surfaces (SLA group) and femtosecond laser-treated surfaces (FEMTO group) in a rabbit model. Methods: Implants were inserted into rabbit tibiae, and implant [...] Read more.
Background: The purpose of this study is to compare bone union and soft-tissue healing in titanium implants with sandblasted, large-grit, acid-etched surfaces (SLA group) and femtosecond laser-treated surfaces (FEMTO group) in a rabbit model. Methods: Implants were inserted into rabbit tibiae, and implant stability, soft-tissue healing, and microscopic analyses (micro-CT and biopsy) were conducted. All animals maintained normal weight and health post-surgery. Results: Hemostasis was achieved at the laser incision site on the surgery day, but healing was slower compared to conventional methods. Micro-CT showed no significant differences in new bone formation or inflammatory tissue infiltration between groups. Tissue biopsy revealed slightly higher bone-implant contact in the FEMTO group compared to the SLA group, though not statistically significant. Conclusion: These findings suggest that femtosecond laser surface treatment may provide bone union comparable to or better than SLA treatment, though laser-assisted soft-tissue incisions heal more slowly. Full article
(This article belongs to the Special Issue Implant Dentistry: Advanced Materials, Methods and Technologies)
Show Figures

Figure 1

13 pages, 20364 KB  
Article
The Effect of In Situ Laser-Assisted Plasma Spraying on the Plasma Etching Resistance of Yttrium Oxide Coating
by Xutao Zhao, Tian Xie, Panpan Zhang, Zhehe Yao, Qunli Zhang, Jiake Deng, Yongfeng Sui and Jianhua Yao
Coatings 2024, 14(11), 1427; https://doi.org/10.3390/coatings14111427 - 10 Nov 2024
Cited by 2 | Viewed by 2576
Abstract
In recent years, yttrium oxide coatings prepared by atmospheric plasma spraying (APS) have been employed extensively in semiconductor processing equipment. Meanwhile, defects in yttrium oxide coating, such as unmelted particles and pores, reduce the etching resistance of the coating. In this work, two [...] Read more.
In recent years, yttrium oxide coatings prepared by atmospheric plasma spraying (APS) have been employed extensively in semiconductor processing equipment. Meanwhile, defects in yttrium oxide coating, such as unmelted particles and pores, reduce the etching resistance of the coating. In this work, two yttrium oxide coatings were prepared by in situ laser-assisted plasma spraying (LAPS) coupled with a 500 W and 600 W laser for comparison with a coating prepared by APS, and the effects of the laser on the coating properties were investigated. The results show that the surface roughness was reduced by 25.7% (500 W) and 25.3% (600 W) and the porosity was reduced by 52.3% (500 W) and 36.9% (600 W) after laser coupling. After being etched by CF4/CHF3 for a long time, it was observed from SEM, EDS and XPS analyses that the intensity ratios of the Y-F bonds in the coating were 1 (APS):1.3 (LAPS+500W):1.1 (LAPS+600W), which indicated that the LAPS+500W coating had a thicker fluorination layer. It was also observed that the fluorination layer at the defect was first eroded; then, the erosion area gradually spread to the surrounding area, and finally, the fluorination layer was etched. This indicated that the defects had a significant impact on the etching resistance. Consequently, the LAPS+500W coating with fewer defects and a thicker fluorination layer showed the lowest etching rate. Therefore, in situ laser-assisted plasma spraying coupled with an appropriate laser power is an effective method to improve the performance of yttrium oxide coatings. Full article
(This article belongs to the Special Issue Advances in Deposition and Characterization of Hard Coatings)
Show Figures

Figure 1

23 pages, 3089 KB  
Review
Recent Advances in Black Silicon Surface Modification for Enhanced Light Trapping in Photodetectors
by Abdulrahman Alsolami, Hadba Hussain, Radwan Noor, Nourah AlAdi, Nada Almalki, Abdulaziz Kurdi, Thamer Tabbakh, Adnan Zaman, Salman Alfihed and Jing Wang
Appl. Sci. 2024, 14(21), 9841; https://doi.org/10.3390/app14219841 - 28 Oct 2024
Cited by 9 | Viewed by 3559
Abstract
The intricate nanostructured surface of black silicon (BSi) has advanced photodetector technology by enhancing light absorption. Herein, we delve into the latest advancements in BSi surface modification techniques, specifically focusing on their profound impact on light trapping and resultant photodetector performance improvement. Established [...] Read more.
The intricate nanostructured surface of black silicon (BSi) has advanced photodetector technology by enhancing light absorption. Herein, we delve into the latest advancements in BSi surface modification techniques, specifically focusing on their profound impact on light trapping and resultant photodetector performance improvement. Established methods such as metal-assisted chemical etching, electrochemical etching, reactive ion etching, plasma etching, and laser ablation are comprehensively analyzed, delving into their mechanisms and highlighting their respective advantages and limitations. We also explore the impact of BSi on the emerging applications in silicon (Si)-based photodetectors, showcasing their potential for pushing the boundaries of light-trapping efficiency. Throughout this review, we critically evaluate the trade-offs between fabrication complexity and performance enhancement, providing valuable insights for future development in this rapidly evolving field. This knowledge on the BSi surface modification and its applications in photodetectors can play a crucial role in future implementations to substantially boost light trapping and the performance of Si-based optical detection devices consequently. Full article
Show Figures

Figure 1

10 pages, 1944 KB  
Article
Nanochannels in Fused Silica through NaOH Etching Assisted by Femtosecond Laser Irradiation
by Pasquale Barbato, Roberto Osellame and Rebeca Martínez Vázquez
Materials 2024, 17(19), 4906; https://doi.org/10.3390/ma17194906 - 7 Oct 2024
Cited by 1 | Viewed by 2085
Abstract
Sodium hydroxide (NaOH) is increasingly drawing attention as a highly selective etchant for femtosecond laser-modified fused silica. Unprecedented etching contrasts between the irradiated and pristine areas have enabled the fabrication of hollow, high-aspect-ratio structures in the bulk of the material, overcoming the micrometer [...] Read more.
Sodium hydroxide (NaOH) is increasingly drawing attention as a highly selective etchant for femtosecond laser-modified fused silica. Unprecedented etching contrasts between the irradiated and pristine areas have enabled the fabrication of hollow, high-aspect-ratio structures in the bulk of the material, overcoming the micrometer threshold as the minimum feature size. In this work, we systematically study the effect of NaOH solutions under different etching conditions (etchant concentration, temperature, and etching time) on the tracks created by tightly focused femtosecond laser pulses to assess the best practices for the fabrication of hollow nanostructures in bulk fused silica. Full article
(This article belongs to the Special Issue Advances in Laser Processing Technology of Materials)
Show Figures

Figure 1

22 pages, 6177 KB  
Review
Recent Progresses on Hybrid Lithium Niobate External Cavity Semiconductor Lasers
by Min Wang, Zhiwei Fang, Haisu Zhang, Jintian Lin, Junxia Zhou, Ting Huang, Yiran Zhu, Chuntao Li, Shupeng Yu, Botao Fu, Lingling Qiao and Ya Cheng
Materials 2024, 17(18), 4453; https://doi.org/10.3390/ma17184453 - 11 Sep 2024
Cited by 3 | Viewed by 3511
Abstract
Thin film lithium niobate (TFLN) has become a promising material platform for large scale photonic integrated circuits (PICs). As an indispensable component in PICs, on-chip electrically tunable narrow-linewidth lasers have attracted widespread attention in recent years due to their significant applications in high-speed [...] Read more.
Thin film lithium niobate (TFLN) has become a promising material platform for large scale photonic integrated circuits (PICs). As an indispensable component in PICs, on-chip electrically tunable narrow-linewidth lasers have attracted widespread attention in recent years due to their significant applications in high-speed optical communication, coherent detection, precision metrology, laser cooling, coherent transmission systems, light detection and ranging (LiDAR). However, research on electrically driven, high-power, and narrow-linewidth laser sources on TFLN platforms is still in its infancy. This review summarizes the recent progress on the narrow-linewidth compact laser sources boosted by hybrid TFLN/III-V semiconductor integration techniques, which will offer an alternative solution for on-chip high performance lasers for the future TFLN PIC industry and cutting-edge sciences. The review begins with a brief introduction of the current status of compact external cavity semiconductor lasers (ECSLs) and recently developed TFLN photonics. The following section presents various ECSLs based on TFLN photonic chips with different photonic structures to construct external cavity for on-chip optical feedback. Some conclusions and future perspectives are provided. Full article
Show Figures

Figure 1

13 pages, 2507 KB  
Article
Controllable Preparation of Fused Silica Micro Lens Array through Femtosecond Laser Penetration-Induced Modification Assisted Wet Etching
by Kaijie Cheng, Ji Wang, Guolong Wang, Kun Yang and Wenwu Zhang
Materials 2024, 17(17), 4231; https://doi.org/10.3390/ma17174231 - 27 Aug 2024
Cited by 6 | Viewed by 2230
Abstract
As an integrable micro-optical device, micro lens arrays (MLAs) have significant applications in modern optical imaging, new energy technology, and advanced displays. In order to reduce the impact of laser modification on wet etching, we propose a technique of femtosecond laser penetration-induced modification-assisted [...] Read more.
As an integrable micro-optical device, micro lens arrays (MLAs) have significant applications in modern optical imaging, new energy technology, and advanced displays. In order to reduce the impact of laser modification on wet etching, we propose a technique of femtosecond laser penetration-induced modification-assisted wet etching (FLIPM-WE), which avoids the influence of previous modification layers on subsequent laser pulses and effectively improves the controllability of lens array preparation. We conducted a detailed study on the effects of the laser single pulse energy, pulse number, and hydrofluoric acid etching duration on the morphology of micro lenses and obtained the optimal process parameters. Ultimately, two types of fused silica micro lens arrays with different focal lengths but the same numerical aperture (NA = 0.458) were fabricated using the FLPIM-WE technology. Both arrays exhibited excellent geometric consistency and surface quality (Ra~30 nm). Moreover, they achieved clear imaging at various magnifications with an adjustment range of 1.3×~3.0×. This provides potential technical support for special micro-optical systems. Full article
(This article belongs to the Special Issue Cutting Processes for Materials in Manufacturing)
Show Figures

Figure 1

11 pages, 3611 KB  
Article
Prediction of Femtosecond Laser Etching Parameters Based on a Backpropagation Neural Network with Grey Wolf Optimization Algorithm
by Yuhui Liu, Duansen Shangguan, Liping Chen, Chang Su and Jing Liu
Micromachines 2024, 15(8), 964; https://doi.org/10.3390/mi15080964 - 28 Jul 2024
Cited by 6 | Viewed by 1965
Abstract
Investigating the optimal laser processing parameters for industrial purposes can be time-consuming. Moreover, an exact analytic model for this purpose has not yet been developed due to the complex mechanisms of laser processing. The main goal of this study was the development of [...] Read more.
Investigating the optimal laser processing parameters for industrial purposes can be time-consuming. Moreover, an exact analytic model for this purpose has not yet been developed due to the complex mechanisms of laser processing. The main goal of this study was the development of a backpropagation neural network (BPNN) with a grey wolf optimization (GWO) algorithm for the quick and accurate prediction of multi-input laser etching parameters (energy, scanning velocity, and number of exposures) and multioutput surface characteristics (depth and width), as well as to assist engineers by reducing the time and energy require for the optimization process. The Keras application programming interface (API) Python library was used to develop a GWO-BPNN model for predictions of laser etching parameters. The experimental data were obtained by adopting a 30 W laser source. The GWO-BPNN model was trained and validated on experimental data including the laser processing parameters and the etching characterization results. The R2 score, mean absolute error (MAE), and mean squared error (MSE) were examined to evaluate the prediction precision of the model. The results showed that the GWO-BPNN model exhibited excellent accuracy in predicting all properties, with an R2 value higher than 0.90. Full article
Show Figures

Figure 1

Back to TopTop