Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = laser-MIG hybrid multi-layer welding

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5945 KiB  
Article
Microstructure and Impact Toughness of Laser-Arc Hybrid Welded Joint of Medium-Thick TC4 Titanium Alloy
by Peng Luo, Wanxi Feng, Gang Zu, Linyin Luo and Jun Xiao
Coatings 2024, 14(4), 395; https://doi.org/10.3390/coatings14040395 - 27 Mar 2024
Cited by 7 | Viewed by 2197
Abstract
This study delves into the impact toughness of medium-thick (12 mm thick) titanium alloy joints crafted through a multi-layer, multi-pass welding technique that blends laser-arc (MIG) hybrid welding technology. Microstructural scrutiny, employing optical microscopy, SEM and TEM, unveils a consistent composition across weld [...] Read more.
This study delves into the impact toughness of medium-thick (12 mm thick) titanium alloy joints crafted through a multi-layer, multi-pass welding technique that blends laser-arc (MIG) hybrid welding technology. Microstructural scrutiny, employing optical microscopy, SEM and TEM, unveils a consistent composition across weld passes, with prevailing α/α′ phases interspersed with some β phase, resulting in basket-weave structures primarily dominated by acicular α′ martensite. However, upper regions exhibit Widmanstatten microstructures, potentially undermining joint toughness. Hardness testing indicates higher values in cosmetic layers (~420 HV) compared to backing layers and bending tests manifest superior toughness in lower joint regions, attributed to smaller grain sizes induced by repetitive welding thermal cycles. Impact toughness assessment unveils diminished values in the weld metal (WM) compared to the heat-affected zone (HAZ) and base material (BM), amounting to 91.3% of the base metal’s absorption energy. This decrement is ascribed to heightened porosity in upper regions and variations in grain size and phase composition due to multi-layer, multi-pass welding. Microstructural analysis proximal to failure sites suggests one mechanism wherein crack propagation is impeded by the β phase at acute crack angles. In essence, this study not only underscores the practicality of laser-MIG hybrid welding for medium-thick TC4 alloy plates but also underscores the reliability of joint mechanical properties. Full article
Show Figures

Figure 1

39 pages, 18719 KiB  
Article
Sustainable Hybrid Manufacturing of AlSi5 Alloy Turbine Blade Prototype by Robotic Direct Energy Layered Deposition and Subsequent Milling: An Alternative to Selective Laser Melting?
by Jaka Dugar, Awais Ikram, Damjan Klobčar and Franci Pušavec
Materials 2022, 15(23), 8631; https://doi.org/10.3390/ma15238631 - 3 Dec 2022
Cited by 12 | Viewed by 2980
Abstract
Additive technologies enable the flexible production through scalable layer-by-layer fabrication of simple to intricate geometries. The existing 3D-printing technologies that use powders are often slow with controlling parameters that are difficult to optimize, restricted product sizes, and are relatively expensive (in terms of [...] Read more.
Additive technologies enable the flexible production through scalable layer-by-layer fabrication of simple to intricate geometries. The existing 3D-printing technologies that use powders are often slow with controlling parameters that are difficult to optimize, restricted product sizes, and are relatively expensive (in terms of feedstock and processing). This paper presents the development of an alternative approach consisting of a CAD/CAM + combined wire arc additive-manufacturing (WAAM) hybrid process utilizing the robotic MIG-based weld surfacing and milling of the AlSi5 aluminum alloy, which achieves sustainably high productivity via structural alloys. The feasibility of this hybrid approach was analyzed on a representative turbine blade piece. SprutCAM suite was utilized to identify the hybrid-manufacturing parameters and virtually simulate the processes. This research provides comprehensive experimental data on the optimization of cold metal transfer (CMT)–WAAM parameters such as the welding speed, current/voltage, wire feed rate, wall thickness, torch inclination angle (shift/tilt comparison), and deposit height. The multi-axes tool orientation and robotic milling strategies, i.e., (a) the side surface from rotational one-way bottom-up and (b) the top surface in a rectangular orientation, were tested in virtual CAM environments and then adopted during the prototype fabrication to minimize the total fabrication time. The effect of several machining parameters and robotic stiffness (during WAAM + milling) were also investigated. The mean deviation for the test piece’s tolerance between the virtual processing and experimental fabrication was −0.76 mm (approx.) at a standard deviation of 0.22 mm assessed by 3D scanning. The surface roughness definition Sa in the final WAAM pass corresponds to 36 µm, which was lowered to 14.3 µm after milling, thus demonstrating a 55% improvement through the robotic comminution. The tensile testing at 0° and 90° orientations reported fracture strengths of 159 and 161.3 MPa, respectively, while the yield stress and reduced longitudinal (0°) elongations implied marginally better toughness along the WAAM deposition axes. The process sustainability factors of hybrid production were compared with Selective Laser Melting (SLM) in terms of the part size freedom, processing costs, and fabrication time with respect to tight design tolerances. The results deduced that this alternative hybrid-processing approach enables an economically viable, resource/energy feasible, and time-efficient method for the production of complex parts in contrast to the conventional additive technologies, i.e., SLM. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

10 pages, 5852 KiB  
Article
Effect of Heat Input on LMHMW Joint of Carbon Steel
by Shujun Zhou, Tingyan Yan, Waqas Muneer, Xuan Yin, Qiyu Gao and Xiaohong Zhan
Appl. Sci. 2022, 12(1), 301; https://doi.org/10.3390/app12010301 - 29 Dec 2021
Cited by 2 | Viewed by 1874
Abstract
Laser-MIG hybrid multi-layer welding (LMHMW) technology has been employed in paraxial configuration with laser leading for the welding of 20 mm thick Q235 carbon steel plates to exploit the hybridization effect that addresses the shortcomings of the individual process as well as to [...] Read more.
Laser-MIG hybrid multi-layer welding (LMHMW) technology has been employed in paraxial configuration with laser leading for the welding of 20 mm thick Q235 carbon steel plates to exploit the hybridization effect that addresses the shortcomings of the individual process as well as to compliment their merits. The bilateral effects of arc augmented laser welding have resulted in complete joint penetration, process efficiency, stability and gap bridge ability. Samples welded under varying heat inputs in multiple passes have been analyzed for their microstructure evaluation using an optical microscope followed by tensile and Vickers hardness testing in various regions of the weld zones. This process was conducted to characterize the effect of heat input on the mechanical properties of the welded joints. The experimental results illustrate that different heat inputs have significant effects on the microstructure, heat affected zone width and mechanical properties of welded joints. The microhardness near the fusion line decreases dramatically due to the influence of the phase transformation process, and the highest microhardness value is obtained in the center of the weld seam. By using reasonable process parameters, the strength of the welded joint can obtain 458.5 MPa. Full article
Show Figures

Figure 1

Back to TopTop