Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = laser warning receiver

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2420 KiB  
Article
Validating Precise Orbit Determination from Satellite-Borne GPS Data of Haiyang-2D
by Jinyun Guo, Guangzhe Wang, Hengyang Guo, Mingsen Lin, Hailong Peng, Xiaotao Chang and Yingming Jiang
Remote Sens. 2022, 14(10), 2477; https://doi.org/10.3390/rs14102477 - 21 May 2022
Cited by 8 | Viewed by 2929
Abstract
Haiyang-2D (HY-2D) is the fourth satellite in the marine dynamic satellite series established by China. It was successfully launched on 19 May 2021, marking the era of the 3-satellite network in the marine dynamic environment satellite series of China. The satellite’s precision orbit [...] Read more.
Haiyang-2D (HY-2D) is the fourth satellite in the marine dynamic satellite series established by China. It was successfully launched on 19 May 2021, marking the era of the 3-satellite network in the marine dynamic environment satellite series of China. The satellite’s precision orbit determination (POD) and validations are of great significance for ocean warning and marine altimetry missions. HY-2D is equipped with a laser reflector array (LRA), a satellite-borne Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) receiver, and a satellite-borne dual-frequency GPS receiver named HY2 that was independently developed in China. In this paper, the quality of GPS data collected by the HY2 is analyzed based on indicators such as the multipath effect, cycle slips, and data completeness. The results suggest that the receiver can be used in POD missions involving low-Earth-orbit (LEO) satellites. The precise orbits of HY-2D are determined by the reduced-dynamics (RD) method. Apart from POD, validation of orbit accuracy is another important task for LEO POD. Therefore, two external validation methods are proposed, including carrier differential validation using one GPS satellite and inter-satellite differential validation using two GPS satellites. These are based on space-borne carrier-phase data, and the GPS satellites used for POD validation do not participate in orbit determination. The results of SLR range validation cannot illustrate the orbit accuracy in x, y, and z directions particularly, so to make validation results more intuitive, the SLR three-dimensional (3D) validation is proposed based on SLR range validation, and the RMSs in x, y, and z directions are 2.66, 3.32, and 2.69 cm, respectively. The results of SLR 3D validation are the same as those of SLR range validation, which proves that the new external validation method provided by SLR 3D is reliable. The RMSs of carrier differential validation and inter-satellite differential validation are 0.68 and 1.06 cm, respectively. The proposed validation methods are proved to be reliable. Full article
(This article belongs to the Special Issue Precision Orbit Determination of Satellites)
Show Figures

Figure 1

11 pages, 4790 KiB  
Article
Freeform Mirror Design for Novel Laser Warning Receivers and Laser Angle of Incidence Sensors
by Jacek Wojtanowski, Marcin Jakubaszek and Marek Zygmunt
Sensors 2020, 20(9), 2569; https://doi.org/10.3390/s20092569 - 30 Apr 2020
Cited by 15 | Viewed by 5438
Abstract
In this paper, we present a novel configuration of an optical angle-of-incidence (AOI) sensor based on the application of a freeform mirror. The main challenge in designing this mirror was to provide a strictly linear transformation between AOI and the spatial position of [...] Read more.
In this paper, we present a novel configuration of an optical angle-of-incidence (AOI) sensor based on the application of a freeform mirror. The main challenge in designing this mirror was to provide a strictly linear transformation between AOI and the spatial position of the spot created on the linear detector array. Another two goals of this paper were to minimize stray light issues (improve the dynamic range) and create an intermediate focus and lateral shift in the detector position with respect to the plane of incidence. From an optical point of view, the designed mirror can thus be understood as the composition of three components: a high-numerical-aperture (NA) fully achromatic f-theta lens in one cross-section and a perfectly focusing lens, combined with a deviating prism in the second (orthogonal) cross-section. In comparison to the standard “shade” methods, the proposed approach allows a constant angular resolution to be maintained over the entire field of view. The mirror was designed on the basis of fundamental geometrical rules by numerically solving differential problems using an innovative scheme based on the minimization of the specific merit function. The proposed method was practically applied to design a freeform mirror for a 90°/120° field-of-view sensor, showing a satisfactory performance. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Graphical abstract

23 pages, 8483 KiB  
Article
Real-Time Tunnel Deformation Monitoring Technology Based on Laser and Machine Vision
by Zurong Qiu, Haopeng Li, Wenchuan Hu, Chenglin Wang, Jiachen Liu and Qianhui Sun
Appl. Sci. 2018, 8(12), 2579; https://doi.org/10.3390/app8122579 - 11 Dec 2018
Cited by 28 | Viewed by 7128
Abstract
Structural health monitoring is a topic of great concern in the world, and tunnel deformation monitoring is one of the important tasks. With the rapid developments in tunnel traffic infrastructure construction, engineers need a portable and real-time system to obtain the tunnel deformation [...] Read more.
Structural health monitoring is a topic of great concern in the world, and tunnel deformation monitoring is one of the important tasks. With the rapid developments in tunnel traffic infrastructure construction, engineers need a portable and real-time system to obtain the tunnel deformation during construction. This paper reports a novel method based on laser and machine vision to automatically measure tunnel deformation of multiple interest points in real time and effectively compensate for the environment vibration, and moreover it can overcome the influence of a dusty and dark tunnel environment in low visibility. An automatic and wireless real-time tunnel deformation monitoring system, which is based on laser and machine vision and can give early warnings for tunnel collapse accidents, is proposed. The proposed system uses a fixed laser beam as a monitoring reference. The image acquisition modules mounted on the measured points receive the laser spots and measure the tunnel accumulative deformation and instantaneous deformation velocity. Compensation methods are proposed to reduce measurement errors caused by laser beam feasibility, temperature, air refraction index, and wireless antenna attitude. The feasibility of the system is verified through tunnel tests. The accuracy of the detection system is better than 0.12 mm, the repeatability is less than 0.11 mm, and the minimum resolution is 10 μm; therefore, the proposed system is very suitable for real-time and automatic detection of tunnel deformation in low visibility during construction. Full article
(This article belongs to the Special Issue Precision Dimensional Measurements)
Show Figures

Figure 1

Back to TopTop