Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = laser remelting (LR)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 6289 KiB  
Article
Effect of Laser Remelting on Cladding Layer of Inconel 718 Superalloy Formed by Laser Metal Deposition
by Bo Xin, Jiangyu Ren, Xiaoqi Wang, Lida Zhu and Yadong Gong
Materials 2020, 13(21), 4927; https://doi.org/10.3390/ma13214927 - 2 Nov 2020
Cited by 17 | Viewed by 3132
Abstract
The brittle phase (Laves) of Inconel 718 parts formed by laser metal deposition (LMD) represents a bottleneck of the engineering applications. In order to investigate effectiveness of laser remelting (LR) technology on suppressing the formation of Laves phase, different laser scanning speeds of [...] Read more.
The brittle phase (Laves) of Inconel 718 parts formed by laser metal deposition (LMD) represents a bottleneck of the engineering applications. In order to investigate effectiveness of laser remelting (LR) technology on suppressing the formation of Laves phase, different laser scanning speeds of the LR process were adopted to build and remelt the single-pass cladding layers. The evolution of phase composition, microstructural morphology, and hardness of the LMD and LMD + LR specimens were analyzed. The experimental results show that different laser scanning speeds can obviously change the microstructural evolutions, Laves phase, and hardness. A low laser scanning speed (360 mm/min) made columnar dendrite uninterruptedly grow from the bottom to the top of the cladding layer. A high laser scanning speed (1320 mm/min) has a significant effect on refining Laves phase and reducing Nb segregation. When the laser scanning speed of LR process is equal to that of LMD, the cladding layers can be completely remelted and the content of Laves phase of the LMD + LR layer is 22.4% lower than that of the LMD layer. As the laser scanning speed increases from 360 to 1320 mm/min, the mean primary dendrite arm spacing (PDAS) values of the remelting area decrease from 6.35 to 3.28 μm gradually. In addition, the low content of Laves phase and porosity contribute to the growth of average hardness. However, the laser scanning speed has a little effect on the average hardness and the maximum average hardness difference of the LMD and LMD + LR layers is only 12.4 HV. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

14 pages, 13729 KiB  
Article
Effect of Laser Remelting on Friction-Wear Behaviors of Cold Sprayed Al Coatings in 3.5% NaCl Solution
by Zhang Jing and Kong Dejun
Materials 2018, 11(2), 283; https://doi.org/10.3390/ma11020283 - 11 Feb 2018
Cited by 18 | Viewed by 3521
Abstract
A cold sprayed Al coating on S355 structural steel was processed using a laser remelting (LR). The surface and cross-section morphologies, chemical compositions, and phases of as-obtained Al coating before and after LR were analyzed using a scanning electronic microscope (SEM), energy dispersive [...] Read more.
A cold sprayed Al coating on S355 structural steel was processed using a laser remelting (LR). The surface and cross-section morphologies, chemical compositions, and phases of as-obtained Al coating before and after LR were analyzed using a scanning electronic microscope (SEM), energy dispersive spectrometer (EDS), and X-ray diffractometer (XRD), respectively, and their hardness was measured using a micro-hardness tester. The friction-wear behaviors of Al coating before and after LR in 3.5% NaCl solution were conducted to simulate the sand and gravel scouring on its surface in seawater, the effects of wear loads and speeds on the tribological properties of Al coating were analyzed, and the wear mechanisms under different wear loads and speeds were also discussed. The results show that the Al coating after LR is primarily composed of an Al phase and its hardness is 104.66 HV, increasing 54.70 HV than the cold sprayed Al coating. The average coefficient of friction (COF) of cold sprayed Al coating at the wear load of 0.5, 1.0 and 1.5 N is 0.285, 0.239, and 0.435, respectively, while that after LR is 0.243, 0.227, and 0.327, respectively, decreased by 14.73%, 5.02% and 24.83% compared to the cold sprayed Al coating. The wear rate of cold sprayed Al coating at the wear load of 0.5, 1.0 and 1.5 N is 1.60 × 10−4, 2.36 × 10−4, and 2.40 × 10−4 mm3/m·N, respectively, while that after LR is 1.59 × 10−4, 1.70 × 10−4, and 1.94 × 10–4 mm3/m·N, respectively, decreased by 1%, 32%, and 23%, respectively, indicating that LR has high anti-friction performance. Under the wear load action of 1.0 N, the average COF of laser remelted Al coating at the wear speeds of 300, 400 and 500 times/min is 0.294, 0.279, and 0.239, respectively, and the corresponding wear rate is 1.06 × 10−4, 1.24 × 10−4, and 1.70 × 10−4 mm3/m·N, respectively. The wear mechanism of cold sprayed Al coating is primarily corrosion wear at the loads of 0.5 and 1.0 N, and that at the load of 1.5 N is abrasive wear and fatigue wear; while that after LR is abrasive wear and fatigue wear, with no corrosion wear, showing that LR improves its corrosion and wear resistance. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Figure 1

19 pages, 19940 KiB  
Article
Effect of Laser Remelting Power on Immersion Corrosion of Amorphous Al–Ti–Ni Coatings
by Haixiang Chen and Dejun Kong
Coatings 2018, 8(2), 46; https://doi.org/10.3390/coatings8020046 - 25 Jan 2018
Cited by 7 | Viewed by 4940
Abstract
An arc-sprayed amorphous Al–Ti–Ni coating on S355 structural steel was processed by laser remelting (LR) at powers of 600, 800, and 1000 W. The surface-cross-sectional morphologies, chemical element distributions, and phase compositions of the as-obtained Al–Ti–Ni coatings were analyzed using a scanning electron [...] Read more.
An arc-sprayed amorphous Al–Ti–Ni coating on S355 structural steel was processed by laser remelting (LR) at powers of 600, 800, and 1000 W. The surface-cross-sectional morphologies, chemical element distributions, and phase compositions of the as-obtained Al–Ti–Ni coatings were analyzed using a scanning electron microscope (SEM), energy-dispersive spectrometer (EDS), and X-ray diffractometer (XRD), respectively. The immersion corrosion tests of Al–Ti–Ni coatings in 3.5% NaCl solution for 720 h were performed to investigate the effects of LR power on their immersion corrosion behaviors. The test results show that the amorphous Al–Ti–Ni coatings form good metallurgical bonding with the substrate after LR. The AlNi, Al3Ti, Al3Ni2, Ti3O5, and Al2O3 amorphous phases are detected in the Al–Ti–Ni coatings after LR. The corrosion potentials of Al–Ti–Ni coatings after LR show a positive shift relative to that of S355 steel, implying that the corrosion resistance of Al–Ti–Ni coatings was superior to that of S355 steel. A dense protective Al2O3 film is formed on the Al–Ti–Ni coating surface at an LR power of 1000 W, at which power the highest corrosion potential of −0.233 V is observed. The corrosion mechanisms of Al–Ti–Ni coating at the LR power of 1000 W are uniform corrosion and pitting corrosion, while those of Al–Ti–Ni coatings at the LR powers of 600 and 800 W are localized corrosion and pitting corrosion. The corrosion resistance of Al–Ti–Ni coating with the LR power of 1000 W is better than those at the LR powers of 600 and 800 W, effectively improving the corrosion resistance of S355 steel. Full article
(This article belongs to the Special Issue Laser Surface Treatment)
Show Figures

Graphical abstract

Back to TopTop