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Abstract: The brittle phase (Laves) of Inconel 718 parts formed by laser metal deposition (LMD)
represents a bottleneck of the engineering applications. In order to investigate effectiveness of laser
remelting (LR) technology on suppressing the formation of Laves phase, different laser scanning speeds
of the LR process were adopted to build and remelt the single-pass cladding layers. The evolution of
phase composition, microstructural morphology, and hardness of the LMD and LMD + LR specimens
were analyzed. The experimental results show that different laser scanning speeds can obviously
change the microstructural evolutions, Laves phase, and hardness. A low laser scanning speed
(360 mm/min) made columnar dendrite uninterruptedly grow from the bottom to the top of the
cladding layer. A high laser scanning speed (1320 mm/min) has a significant effect on refining Laves
phase and reducing Nb segregation. When the laser scanning speed of LR process is equal to that of
LMD, the cladding layers can be completely remelted and the content of Laves phase of the LMD
+ LR layer is 22.4% lower than that of the LMD layer. As the laser scanning speed increases from
360 to 1320 mm/min, the mean primary dendrite arm spacing (PDAS) values of the remelting area
decrease from 6.35 to 3.28 µm gradually. In addition, the low content of Laves phase and porosity
contribute to the growth of average hardness. However, the laser scanning speed has a little effect on
the average hardness and the maximum average hardness difference of the LMD and LMD + LR
layers is only 12.4 HV.

Keywords: laser remelting (LR), laves phases; microstructure; laser scanning speed

1. Introduction

Laser metal deposition (LMD) process is an additive manufacturing technology that is useful for
the production of large or high-valued metal components in a short production cycle [1]. By utilizing
a high-energy laser, a molten pool is formed by melting the alloyed spherical powder ejected from
several nozzles, and then rapidly solidifies to deposit cladding layers. LMD has been successfully
employed to form many types of metallic materials and applied in aeronautics, astronautics, mould, etc.
Recently, LMD of Inconel 718 Ni-based superalloy has attracted much attention because of the benefits
of excellent high-temperature creep resistance and good metallurgical bonding with less heat-affected
zone when compared to traditional metal joining processes [2]. The Inconel 718 superalloy has excellent
heat resistant performance (650–1000 ◦C) and stress-corrosion resistance [3–5]. Thus, the Inconel
718 structures have been widely used in aviation and aerospace, especially for the turbine blades [6,7].
However, previous research results show that the brittle phase (Laves) inevitably appears during the
laser cladding process of Inconel 718 and some strengthening phases are difficult to precipitate in
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the forming structure [8]. Meanwhile, due to the rapid cooling and solidification of the process of
direct laser deposition, internal defects such as pores, non-fusion, and cracks are easily produced in
the cladding layers [9]. These defects can greatly weaken the mechanical properties of Inconel 718
structures and restrict its wide application.

To address these issues, extensive research has been launched in recent years to decrease the
content of Laves phase. Some research focuses on optimizing the LMD parameters such as laser
scanning speed and laser beam power to reduce the energy input [10,11]. However, too low energy
input will cause more cracks and pores [12]. Xiao et al. [13] found that the quasi-continuous-wave
(QCW) laser tends to produce fine equiaxed dendrites, less Nb segregations and finer discrete Laves
phase than the continuous-wave (CW) laser.

In addition, some auxiliary process was applied in the LMD to control the Laves phase. For example,
Zhang et al. [14] found that the content of Laves phase in the cladding layer decreased from 10.25 to
3.5 vol.% when the substrate was placed in liquid nitrogen. Li et al. [15] indicated that the solution and
double aging treatment made the Laves phases gradually dissolve and many strengthening phases
precipitated at the dendrite boundaries with the solution temperature rising. Besides these methods,
laser remelting (LR) had been proved to reduce the porosity and improve the surface performance of
the LMD structures [16]. For instance, Lu et al. [17] found that LR treatment had a significant influence
on surface topography of K423A nickel-base superalloy and appropriate LR parameters can improve
the surface properties of material. Yasa et al. [18] indicated LR treatment can improve the density
(up to 98%) and hardness of the remelted zone when the energy density is sufficient. Wei et al. [19]
optimized the number of remelting cycles to improve the residual stress of the LMD structure.

In addition to the above methods based on LR treatment, Mo et al. [20] indicated that vanadium
(V) may effectively prevent the precipitation of Laves phase (volume fraction reduced from 2.3% to
0.4%). Micro-alloying of V can be very helpful in ingots homogenization annealing of Inconel 718 alloy
in industry production.

Based on the above analysis, this research fully recognizes the contributions of the existing
literatures. However, to the best of the authors’ knowledge, effects of laser remelting treatment on
phase composition of Inconel 718 superalloy structures by laser metal deposition still need more
investigations. Thus, in this study, hybrid LMD and LR processes with different laser scanning speeds
were adopted to form the single-pass cladding layers in order to analyze the evolution of microstructural
morphology, phase composition and hardness of Inconel 718 superalloy. The experimental results
verified the feasibility of the LR treatment.

2. Experimental Condition and Procedure

2.1. Experimental Condition and Material

In this paper, the LMD and LMD + LR experiments of Inconel 718 superalloy were conducted
in a SVW80C-3D (Hybridwise Technology Co. Ltd., Dalian, China) hybrid additive and subtractive
machining center, which is primarily composed of YLS-2000 laser generator (IPG Photonics Corporation,
Oxford, MS, USA), RC-PGF-D-2 powder feeder (Zhongke Raycham Laser Technology Co., Ltd., Nanjing,
China), ET-80 air compressor (Jaguar Mechanical and Electrical Equipment Co., Ltd., Shenyang, China),
DM-1.5H nitrogen generator (Demiao Technology Co. Ltd., Shijiazhuang, China), Heidenhain operating
system (TNC640, Heidenhain, Berlin, Germany) and data acquisition system. The laser scanning speed
can be adjusted by controlling the movement speed of the 3-axis laser cladding head, as shown in
Figure 1a. Nitrogen gas is selected as protecting and carrier gas to deliver the powder to the substrate.
In the LR process, the powder feeder is turned off to stop delivering powder when the laser generator
works. Figure 1b illustrates the principle of LMD + LR processes.
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Figure 1. (a) SVW80C-3D hybrid additive and subtractive machine center; (b) principle of LMD and
LR process in the SVW80C-3D center.

A nickel-based alloyed Inconel 718 powder with the spherical shape was selected as laser
deposition and remelting material in this research. The distribution of particle size is in a range of
53–150 µm. The chemical composition of the Inconel 718 powder is given in Table 1. In order to
achieve a good metallurgical bonding and reduce cracks in the interface between the substrate and
Inconel 718 cladding layers, we chose the forged Inconel 718 superalloy as the substrate with the size
of 160 × 100 × 10 mm3. Moreover, before the LMD/LR process, the substrate surface was well cleaned.

Table 1. Chemical composition of nickel-based superalloy Inconel 718 powder.

Element Ni Cr Mo Nb C Al Ti Mn Cu Fe

wt.% balanced 18.165 3.228 5.395 0.064 0.625 0.928 0.158 0.134 20.886

2.2. Experimental Parameter and Procedure

The previous studies have shown that laser power and laser scanning speed play an important
role in the performance of LMD process [21]. In this research, the laser scanning speed vLR of the LR
process was selected as a single variable in a range of 360 mm/min to 1320 mm/min and the increment
∆vLR was 480 mm/min. Other constant parameters of the LMD process were set as follows: laser
cladding power PLMD was 1000 W; powder feed rate was 13.5 g/min; laser scanning speed vLMD

was 360 mm/min. Moreover, the distance from the focus of laser beam to molten pool (defocusing
distance, LD) was 13.5 mm. As each cladding layer had been deposited and solidified, LR treatment
was followed and the remelting direction keeps constant with the LMD process. The laser remelting
power PLR was 1000 W. The formed LMD and LMD + LR samples in the experiments are shown in
Figure 2, including 11 LMD layers (No. 1–11) with the same technological parameters and 9 LMD +

LR layers (No. 12–20) which were divided into three groups by using the laser scanning speeds of
360 mm/min (No. 12–14), 840 mm/min (No. 15–17), and 1320 mm/min (No. 18–20), respectively.

In the experiments, the measuring items including hardness, dendrite morphology, phase structure
of precipitation, especially Laves phase, and the chemical composition of the precipitations were
implemented in the different regions of single-pass cladding and remelting layers. The results were
compared with corresponding un-remelted layers. The metallographic cross sections of the LMD and
LR specimens were obtained through cutting, grinding, polishing, and etching (40 mL HCl + 40 mL
C2H6O + 2 g CuCl2). A high-speed camera (5KF20, FuHuang AgileDevice (Revealer), Hefei, China)
was used to visualize the LMD and LR processes and take instantaneous pictures of the molten pool
under more than 5000 frames per second (FPS). The OLS4100 3D microscope (Olympus Corporation,
Tokyo, Japan) and Zeiss’s ULTRA PLUS (Carl Zeiss AG, Oberkochen, Germany) scanning electron
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microscope (SEM) were used to observe the dendrite morphology and precipitated phase respectively.
The chemical composition of the phase in the molten was characterized by the energy spectrometer
with SEM. The micro-hardness measurement was conducted on the HVS-1000M Vickers hardness
tester (Ledi Instruments Co., Ltd., Ningbo, China) (test pressure 1 kg, the loading time and duration
were 10 s and 3 s respectively).
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Figure 2. The formed LMD and LMD + LR single-pass layers in the experiments.

3. Results and Discussion

In the first experiment, the surface morphologies of the molten pool and single-pass cladding
layers formed by LMD and LMD + LR processes were obtained by the high-speed camera and 3D
microscope. It is evident from Figure 3 that the surface smoothness of the single-pass LMD layer was
significantly improved by the LR process. During the LMD process, a mass of Inconel 718 powder was
ejected from the nozzles and then was reflected by the substrate surface. Thus, much powder adheres
to the top surface of cladding layer along the laser scanning track leading to the uneven surfaces
and dents. After LR treatment, the adherent powder was remelted and flowed into the molten pool,
which contributes to a better surface smoothness of the remelted layer.Materials 2020, 13, x FOR PEER REVIEW 5 of 13 
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3.1. Microstructure

Effect of laser scanning speed of LR process on the dendrite morphology was studied in this
subsection. Figure 4 displays the cross sections of several single-pass specimens. For the LMD layers
in Figure 4a–c, columnar dendrites grow along the bottom boundary and then transform to equiaxial
dendrites in the middle and top of the cladding layer. As shown in the yellow dotted oval in Figure 4c,
around the top of the layer, there exists a chaotic area where the equiaxial dendrites differ with each
other in size and shape. Because fast heat dissipation through the substrate occurs at the interface
between the cladding layer and the substrate, a high temperature gradient contributes to the formation
of columnar crystals. As the distance from the substrate increases, thermal radiation and convection
with air play a major role in heat dissipation. The gradual reduction of the temperature gradient is
the main reason for the formation of equiaxial dendrites. Meanwhile the change of heat dissipation
mode inevitably makes more impurities element in the air mix into the molten pool, which is beneficial
for gathering particles of heterogeneous nucleation. So, an unordered crystallization of the equiaxial
dendrites forms in the top the layer.

Based on Figure 4d–l, as for the LMD + LR layers, the LR process not only eliminates the top
chaotic area, but also promotes the growth of columnar dendrite in the middle-upper parts of the
layer. This is mainly attributed to the metal flow in the molten pool, which would shake and break the
existing coarse dendrites and increase the nucleation particles. The Gaussian heat source adopted in
the LR process increases the fluidity of the molten pool. During the LR process, the new energy input
makes the molten pool form again. A large number of nucleated particles generate and the dendrites
are obviously refined. Figure 4d,g show that the depth of remelted boundary (blue dotted line) is
related to the laser scanning speed. As the laser scanning speed is relatively fast (such as 840 and
1320 mm/min), inadequate remelting energy leads to the forming of a remelted boundary. Above the
remelted boundary in Figure 4f,i, the remelted zone consists of plenty of columnar dendrites, owning to
the heat dissipation from the top surface of pre-deposition layer. During the LR process, more columnar
dendrites are inclined to grow along the pre-deposition layer. Stronger solidification structure and
more uniform grain size conduce to a better metallurgical bonding between the neighboring layers.
When the LR and LMD processes were kept the same scanning speed (vLR = vLMD = 360 mm/min),
the columnar dendrites continuously grow from bottom to top in the complete remelted layer. Moreover,
the equiaxial dendrite above the remelted boundary (MP2 and MP3) is finer than that of below the
remelting boundary.

In addition, Figure 4 also indicates that the high energy density absorbed in the molten pool can
suppress pores’ production. The number of pores in the cladding layer obviously decreases with
a lower laser scanning speed. The leading factor is that LR process not only prolongs the wetting
time of the molten Inconel 718 superalloy but also accelerates the internal flow of molten pool. Thus,
more formed gas bubbles will escape from pores, leading to a lower porosity.
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3.2. Precipitation

Figure 5 depicts a SEM analysis of precipitation structure of the LMD and LMD + LR specimens
under different laser scanning speeds. Several measuring points on the cross sections of the single-pass
layers (MP1-MP4 in Figure 4) were selected to observe the precipitation structure. Concretely, Figure 5a
shows the larger versions (1:5000) of MP1 located in the top region of the LMD layer. Figure 5b
shows the larger versions (1:5000) of MP4 located in the top region of the LMD + LR layer as
vLR = 360 mm/min. Figure 5c–f indicate the larger versions (1:1000 and 1:5000) of MP3 and MP2
located around the remelting boundary of the LMD + LR layers as vLR = 840, 1320mm/min respectively.
Based on Figure 5a, a large amount of white precipitates and gray matrix can be seen in the LMD
layer. The white precipitates exhibit different morphologies, mainly occupied by continuous strip
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and irregular granule. The relatively fine and globular precipitation particles are mainly distributed
around the mass precipitates.Materials 2020, 13, x FOR PEER REVIEW 8 of 13 
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Figure 5. Microstructure morphologies and measured primary dendrite arm spacing (PDAS) on the
cross sections of the single-pass layers. (a) MP1 in the LMD layer (vLMD = 360 mm/min); (b) MP4
in the LMD + LR layer (vLR = 360 mm/min); (c,d) MP3 in the LMD + LR layer (vLR = 840 mm/min);
(e,f) MP2 in the LMD + LR layer (vLR = 1320 mm/min).

Furthermore, energy spectra of different precipitates (P1, P3, and P4) and gray matrix (P2) in the
LMD + LR layer (vLR = 360 mm/min) were measured and analyzed. Figure 6a displays the position of
each probe point. Figure 6b and Table 2 show the elemental analysis results of different precipitates.
The contents of element Nb and Mo in P1 are 19.04% and 7.75%, 6.2 times and 1.6 times higher than
that in the gray matrix P2, 2.66% and 2.96%. Because of the enrichment of Nb and Mo, it can be judged
that the Laves phase is mainly composed of the strip and irregular shaped precipitates such as P1 and
P4. Based on the elemental result at P3, the globular precipitates are rich in C (9.07%), Ti (17.97%) and
Nb (14.52%), especially the content of Ti reaches 25 times higher than that in the gray matrix P2, 0.69%.
Thus, the globular phase can be identified as the MC carbides. According to the literature [22], the LMD
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process of Inconel 718 powders belongs to a non-equilibrium solidification and the microstructural
evolution is L→ L + γ→ L + NbC/γ→ L + Laves/γ. Nb is continuously ejected from the solid phase
during the formation of dendrites because the solubility of Nb in solid phase is lower than that in
liquid phase. As the solidification continues, the content of Nb increases obviously with the constant
reduction of liquid phase in the molten pool. When the temperature of liquid phase reaches the eutectic
point, the liquid phase transforms into Laves phase and γ phase. The white Laves phase is precipitated
at the interdendritic regions. The edges of dendrites are visible due to the changing distribution of
these bright phases. So, the morphology of the precipitates depends on the dendrites. Specifically,
the strip-like Laves phase appears near the columnar dendrites and the network-like Laves phase
appears near the equiaxed dendrites.Materials 2020, 13, x FOR PEER REVIEW 9 of 13 
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Table 2. Element content analysis of different precipitates.

Element
P1 P2 P3 P4

wt.% wt.% wt.% wt.%

C 8.00 6.82 9.07 6.98
Ti 11.58 0.69 17.97 1.46
Cr 12.17 18.65 10.83 12.85
Fe 11.16 18.83 10.84 11.38
Ni 31.30 49.93 32.92 35.39
Nb 19.04 2.66 14.52 21.94
Mo 7.75 2.96 3.85 10.00

According to Table 2, it can also be found that the content of Ti in the white precipitates at P4 near
the MC carbides is 1.46%, less than that of P1, 11.58%. In the solidification process, a lower solubility of
Ti in solid phase makes much Ti continuously discharged into the liquid phase. Literature [23] proves
that the density of Ti will increase in the liquid phase. Because the content of Ti in liquid phase is
higher than Nb, a higher cooling rate would result in the first precipitation of the MC carbides.

As for the primary dendrite arm spacing (PDAS), based on the SEM images of the precipitation
structure in Figure 5, the PDAS was measured in 5 times at various positions on the SEM images
for each laser scanning speed in order to obtain the mean PDAS values of Laves phase in MP1-MP4.
As shown in Figure 7a, the mean PDAS values decrease from 6.35 to 3.28 µm gradually as vLR increases
from 360 to 1320 mm/min. Through comparison and analysis of the segregation phase content of the
single columnar dendrite, it can be seen that a low laser scanning speed of LR process facilitates the
precipitation of the Laves phase. To acquire the amount of Laves phase accurately, we adopted the
image processing software ImageJ to analyze the images of the microstructure morphology (MP1–MP4)
in Figure 4. A RenyiEntropy color thresholding method was used to mark the Laves phase and then
the function of “Analyze Particles” was used to count the amount of Laves phase per unit area of
3.6 × 10−3 mm2. The results are shown in 7b and 8, which demonstrate that the amount of Laves
phase is strongly influenced by the laser scanning speed. More specifically, based on Figures 7b and
8a,b, the amount of Laves phase per unit area in MP4 of the LMD + LR layer is 615, 22.4% lower
than that of the LMD layer, 793 as vLMD = vLR = 360 mm/min. The Laves phase presents divergent
distribution of dendrites because the energy density of the LR process is higher than that of LMD
process with the same laser scanning speed and laser power. For the LMD process, the laser beam
is always partially sheltered by the ejected powder, thus the energy density is lower than that of
LR process. In the remelted layer, the concentration of Nb was restrained by large thermal gradient
(rapid heating and cooling of molten pool) and more Nb was trapped in the gray matrix. Meanwhile,
the flow of molten pool makes it more uniform in distribution of Nb, Mo, and Ti, which blocks the
formation of Laves phase.
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Moreover, as the laser scanning speed increases from 360 to 1320 mm/min, the amount of Laves
phase in the remelting layer further decreases because a low scanning speed promotes the growth of
dendrite, which contributes to the segregation of element Nb. When the laser power and scanning
speed of LR process are equal to the LMD process (vLR = vLMD = 360 mm/min), the cladding layer
can be completely remelted and more columnar dendrites are found throughout the remelted layer.
In a word, the LR process is beneficial to the reduction of segregation phase. The thick and long
strip-like Laves phase completely disappeared and was replaced by the refined and dispersive ones in
the remelted region.
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3.3. Hardness

Three groups of single-pass remelted layers (vLR = 360, 840 and 1320 mm/min) were selected for
comparison with the LMD layers in hardness. Figure 9 reveals the micro-hardness distribution at a
cross-section of the LMD + LR layer along the depth direction (red line in Figure 9a). The distance
between adjacent test points is 400 µm. For each test point, the reported Vickers hardness was
determined by the average of at least three times measurements. During the LMD process, the substrate
underwent the tempering process, leading to the creation of the Heat Affected Zone (HAZ). In Figure 9a,
the HAZ is marked in the white dotted line and the lowest hardness, 211.5 HV appears on the HAZ.
In Figure 9b, compared with the LMD layers, the average hardness (AV) of the remelted layers increases
significantly. The average hardness of LMD + LR layers gradually decreases from the bottom to the
top of the layer, which is consistent with that of LMD layers. However, when vLR > 360 mm/min,
the cladding layers were incompletely melted and the hardness (yellow and green lines in Figure 9b)
above the remelting line increases obviously. As vLR decreases, the hardness of the remelted zone
increases gradually. In addition, Figure 9b also proves that the scanning speed has a little effect on
the average hardness and the maximum AV difference is only 12.4 HV, 5.12% of the maximum AV
(vLR = 1320 mm/min).
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Based on the above experimental results, two main factors contribute to the hardness variations:
Laves phase and pores. The creation of Laves phase plays a negative influence on the mechanical
properties of Inconel 718 parts formed by LMD process. On one hand, excessive Laves phase in the
cladding layer will consume the strengthening alloying elements such as Mo and Nb, which obstructs
the formation of the strengthening phase. On the other hand, existence of pores reduces the inner
cohesion of cladding layer and makes it easy to deform under external force. According to the above
results, it can be deduced that the content of Laves phase and the porosity in the cladding layer will be
reduced after LR treatment. The low content of Laves phase and porosity also contribute to the growth
of average hardness for the LMD + LR layers.
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hardness results of the test points.

Moreover, a high laser scanning speed in the LR process is in favored of refining the Laves
phase. The strengthening alloying elements, Nb and Mo tend to be deposited in the gray matrix.
However, excessive remelting scanning speed (vLR = 1320 mm/min) also increases porosity, which can
lower the hardness. Therefore, considering the comprehensive influence of Laves phase and porosity,
the average hardness of both LMD and LMD + LR layers has no obvious difference under different
laser scanning speeds.

4. Conclusions

The effect of laser remelting on cladding layer of Inconel 718 superalloy formed by laser metal
deposition was studied in this paper. Different laser scanning speeds can obviously change the
microstructural evolutions, Laves phase and hardness of the cladding layers. The LR process can
promote the formation of columnar dendrites. Columnar dendrites uninterruptedly grow from the
bottom to the top under the low laser scanning speed. The higher laser scanning speed has a significant
effect on refining Laves phase and reducing Nb segregation. When the laser scanning speed of the LR
process is equal to that of LMD (360 mm/min), the cladding layers can be completely remelted and
the content of Laves phase per unit area of the LMD + LR layer is 22.4% lower than that of the LMD
layer. As the laser scanning speed increases from 360 to 1320 mm/min, the mean primary dendrite arm
spacing (PDAS) values of the remelting area decrease from 6.35 µm to 3.28 µm gradually. In addition,
the LR process is beneficial to the reduction of segregation phase. The thick and long strip-like Laves
phase completely disappeared and was replaced by the refined and dispersive ones in the remelting
region. The LR treatment can also slightly improve the hardness of single-pass cladding layers. The low
content of Laves phase and porosity also contribute to the growth of average hardness for the LMD +

LR layers. However, the laser scanning speed has a slight effect on the average hardness of both LMD
and LMD + LR specimens and the maximum average hardness difference is only 12.4 HV.
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