Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = knottin genes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 7695 KiB  
Article
Unveiling the Impact of Gene Presence/Absence Variation in Driving Inter-Individual Sequence Diversity within the CRP-I Gene Family in Mytilus spp.
by Nicolò Gualandi, Davide Fracarossi, Damiano Riommi, Marco Sollitto, Samuele Greco, Mario Mardirossian, Sabrina Pacor, Tiago Hori, Alberto Pallavicini and Marco Gerdol
Genes 2023, 14(4), 787; https://doi.org/10.3390/genes14040787 - 24 Mar 2023
Cited by 5 | Viewed by 2546
Abstract
Mussels (Mytilus spp.) tolerate infections much better than other species living in the same marine coastal environment thanks to a highly efficient innate immune system, which exploits a remarkable diversification of effector molecules involved in mucosal and humoral responses. Among these, antimicrobial [...] Read more.
Mussels (Mytilus spp.) tolerate infections much better than other species living in the same marine coastal environment thanks to a highly efficient innate immune system, which exploits a remarkable diversification of effector molecules involved in mucosal and humoral responses. Among these, antimicrobial peptides (AMPs) are subjected to massive gene presence/absence variation (PAV), endowing each individual with a potentially unique repertoire of defense molecules. The unavailability of a chromosome-scale assembly has so far prevented a comprehensive evaluation of the genomic arrangement of AMP-encoding loci, preventing an accurate ascertainment of the orthology/paralogy relationships among sequence variants. Here, we characterized the CRP-I gene cluster in the blue mussel Mytilus edulis, which includes about 50 paralogous genes and pseudogenes, mostly packed in a small genomic region within chromosome 5. We further reported the occurrence of widespread PAV within this family in the Mytilus species complex and provided evidence that CRP-I peptides likely adopt a knottin fold. We functionally characterized the synthetic peptide sCRP-I H1, assessing the presence of biological activities consistent with other knottins, revealing that mussel CRP-I peptides are unlikely to act as antimicrobial agents or protease inhibitors, even though they may be used as defense molecules against infections from eukaryotic parasites. Full article
(This article belongs to the Special Issue Aquaculture Genetics: Latest Advances and Prospects)
Show Figures

Figure 1

18 pages, 2701 KiB  
Article
In Silico Analysis of a Drosophila Parasitoid Venom Peptide Reveals Prevalence of the Cation–Polar–Cation Clip Motif in Knottin Proteins
by Joseph Arguelles, Jenny Lee, Lady V. Cardenas, Shubha Govind and Shaneen Singh
Pathogens 2023, 12(1), 143; https://doi.org/10.3390/pathogens12010143 - 14 Jan 2023
Cited by 3 | Viewed by 3320
Abstract
As generalist parasitoid wasps, Leptopilina heterotoma are highly successful on many species of fruit flies of the genus Drosophila. The parasitoids produce specialized multi-strategy extracellular vesicle (EV)-like structures in their venom. Proteomic analysis identified several immunity-associated proteins, including the knottin peptide, LhKNOT, [...] Read more.
As generalist parasitoid wasps, Leptopilina heterotoma are highly successful on many species of fruit flies of the genus Drosophila. The parasitoids produce specialized multi-strategy extracellular vesicle (EV)-like structures in their venom. Proteomic analysis identified several immunity-associated proteins, including the knottin peptide, LhKNOT, containing the structurally conserved inhibitor cysteine knot (ICK) fold, which is present in proteins from diverse taxa. Our structural and docking analysis of LhKNOT’s 36-residue core knottin fold revealed that in addition to the knottin motif itself, it also possesses a Cation–Polar–Cation (CPC) clip. The CPC clip motif is thought to facilitate antimicrobial activity in heparin-binding proteins. Surprisingly, a majority of ICKs tested also possess the CPC clip motif, including 75 bona fide plant and arthropod knottin proteins that share high sequence and/or structural similarity with LhKNOT. Like LhKNOT and these other 75 knottin proteins, even the Drosophila Drosomycin antifungal peptide, a canonical target gene of the fly’s Toll-NF-kappa B immune pathway, contains this CPC clip motif. Together, our results suggest a possible defensive function for the parasitoid LhKNOT. The prevalence of the CPC clip motif, intrinsic to the cysteine knot within the knottin proteins examined here, suggests that the resultant 3D topology is important for their biochemical functions. The CPC clip is likely a highly conserved structural motif found in many diverse proteins with reported heparin binding capacity, including amyloid proteins. Knottins are targets for therapeutic drug development, and insights into their structure–function relationships will advance novel drug design. Full article
Show Figures

Figure 1

21 pages, 6124 KiB  
Article
Identification of Novel Toxin Genes from the Stinging Nettle Caterpillar Parasa lepida (Cramer, 1799): Insights into the Evolution of Lepidoptera Toxins
by Natrada Mitpuangchon, Kwan Nualcharoen, Singtoe Boonrotpong and Patamarerk Engsontia
Insects 2021, 12(5), 396; https://doi.org/10.3390/insects12050396 - 29 Apr 2021
Cited by 6 | Viewed by 6452
Abstract
Many animal species can produce venom for defense, predation, and competition. The venom usually contains diverse peptide and protein toxins, including neurotoxins, proteolytic enzymes, protease inhibitors, and allergens. Some drugs for cancer, neurological disorders, and analgesics were developed based on animal toxin structures [...] Read more.
Many animal species can produce venom for defense, predation, and competition. The venom usually contains diverse peptide and protein toxins, including neurotoxins, proteolytic enzymes, protease inhibitors, and allergens. Some drugs for cancer, neurological disorders, and analgesics were developed based on animal toxin structures and functions. Several caterpillar species possess venoms that cause varying effects on humans both locally and systemically. However, toxins from only a few species have been investigated, limiting the full understanding of the Lepidoptera toxin diversity and evolution. We used the RNA-seq technique to identify toxin genes from the stinging nettle caterpillar, Parasa lepida (Cramer, 1799). We constructed a transcriptome from caterpillar urticating hairs and reported 34,968 unique transcripts. Using our toxin gene annotation pipeline, we identified 168 candidate toxin genes, including protease inhibitors, proteolytic enzymes, and allergens. The 21 P. lepida novel Knottin-like peptides, which do not show sequence similarity to any known peptide, have predicted 3D structures similar to tarantula, scorpion, and cone snail neurotoxins. We highlighted the importance of convergent evolution in the Lepidoptera toxin evolution and the possible mechanisms. This study opens a new path to understanding the hidden diversity of Lepidoptera toxins, which could be a fruitful source for developing new drugs. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Graphical abstract

16 pages, 1964 KiB  
Article
Investigation of Antimicrobial Peptide Genes Associated with Fungus and Insect Resistance in Maize
by Joseph Noonan, William Paul Williams and Xueyan Shan
Int. J. Mol. Sci. 2017, 18(9), 1938; https://doi.org/10.3390/ijms18091938 - 15 Sep 2017
Cited by 31 | Viewed by 6478
Abstract
Antimicrobial peptides (AMPs) are small defense proteins present in various organisms. Major groups of AMPs include beta-barrelin, hevein, knottin, lipid transfer protein (LTP), thionin, defensin, snakin, and cyclotide. Most plant AMPs involve host plant resistance to pathogens such as fungi, viruses, and bacteria, [...] Read more.
Antimicrobial peptides (AMPs) are small defense proteins present in various organisms. Major groups of AMPs include beta-barrelin, hevein, knottin, lipid transfer protein (LTP), thionin, defensin, snakin, and cyclotide. Most plant AMPs involve host plant resistance to pathogens such as fungi, viruses, and bacteria, whereas a few plant AMPs from the cyclotide family carry insecticidal functions. In this research, a genome-wide investigation on antimicrobial peptide genes in maize genome was conducted. AMPs previously identified from various plant species were used as query sequences for maize genome data mining. Thirty-nine new maize AMPs were identified in addition to seven known maize AMPs. Protein sequence analysis revealed 10 distinguishable maize AMP groups. Analysis of mRNA expression of maize AMP genes by quantitative real-time polymerase chain reaction (qRT-PCR) revealed different expression patterns in a panel of 10 maize inbred lines. Five maize AMP genes were found significantly associated with insect or fungus resistance. Identification of maize antimicrobial peptide genes will facilitate the breeding of host plant resistance and improve maize production. Full article
(This article belongs to the Special Issue Plant Defense Genes Against Biotic Stresses)
Show Figures

Graphical abstract

15 pages, 7057 KiB  
Article
The Whitefly Bemisia tabaci Knottin-1 Gene Is Implicated in Regulating the Quantity of Tomato Yellow Leaf Curl Virus Ingested and Transmitted by the Insect
by Aliza Hariton Shalev, Iris Sobol, Murad Ghanim, Shu-Sheng Liu and Henryk Czosnek
Viruses 2016, 8(7), 205; https://doi.org/10.3390/v8070205 - 22 Jul 2016
Cited by 40 | Viewed by 7044
Abstract
The whitefly Bemisia tabaci is a major pest to agricultural crops. It transmits begomoviruses, such as Tomato yellow leaf curl virus (TYLCV), in a circular, persistent fashion. Transcriptome analyses revealed that B. tabaci knottin genes were responsive to various stresses. Upon ingestion of [...] Read more.
The whitefly Bemisia tabaci is a major pest to agricultural crops. It transmits begomoviruses, such as Tomato yellow leaf curl virus (TYLCV), in a circular, persistent fashion. Transcriptome analyses revealed that B. tabaci knottin genes were responsive to various stresses. Upon ingestion of tomato begomoviruses, two of the four knottin genes were upregulated, knot-1 (with the highest expression) and knot-3. In this study, we examined the involvement of B. tabaci knottin genes in relation to TYLCV circulative transmission. Knottins were silenced by feeding whiteflies with knottin dsRNA via detached tomato leaves. Large amounts of knot-1 transcripts were present in the abdomen of whiteflies, an obligatory transit site of begomoviruses in their circulative transmission pathway; knot-1 silencing significantly depleted the abdomen from knot-1 transcripts. Knot-1 silencing led to an increase in the amounts of TYLCV ingested by the insects and transmitted to tomato test plants by several orders of magnitude. This effect was not observed following knot-3 silencing. Hence, knot-1 plays a role in restricting the quantity of virions an insect may acquire and transmit. We suggest that knot-1 protects B. tabaci against deleterious effects caused by TYLCV by limiting the amount of virus associated with the whitefly vector. Full article
(This article belongs to the Special Issue Molecular Plant Virus—Insect Vector Interactions)
Show Figures

Figure 1

Back to TopTop