Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (508)

Search Parameters:
Keywords = just transitions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
39 pages, 2781 KiB  
Article
Evaluation of Technological Alternatives for the Energy Transition of Coal-Fired Power Plants, with a Multi-Criteria Approach
by Jessica Valeria Lugo, Norah Nadia Sánchez Torres, Renan Douglas Lopes da Silva Cavalcante, Taynara Geysa Silva do Lago, João Alves de Lima, Jorge Javier Gimenez Ledesma and Oswaldo Hideo Ando Junior
Energies 2025, 18(17), 4473; https://doi.org/10.3390/en18174473 - 22 Aug 2025
Abstract
This paper investigates technological pathways for the conversion of coal-fired power plants toward sustainable energy sources, using an integrated multi-criteria decision-making approach that combines Proknow-C, AHP, and PROMETHEE. Eight alternatives were identified: full conversion to natural gas, full conversion to biomass, coal and [...] Read more.
This paper investigates technological pathways for the conversion of coal-fired power plants toward sustainable energy sources, using an integrated multi-criteria decision-making approach that combines Proknow-C, AHP, and PROMETHEE. Eight alternatives were identified: full conversion to natural gas, full conversion to biomass, coal and natural gas hybridization, coal and biomass hybridization, electricity and hydrogen cogeneration, coal and solar energy hybridization, post-combustion carbon capture systems, and decommissioning with subsequent reuse. The analysis combined bibliographic data (26 scientific articles and 13 patents) with surveys from 14 energy experts, using Total Decision version 1.2.1041.0 and Visual PROMETHEE version 1.1.0.0 software tools. Based on six criteria (environmental, structural, technical, technological, economic, and social), the most viable option was full conversion to natural gas (ϕ = +0.0368), followed by coal and natural gas hybridization (ϕ = +0.0257), and coal and solar hybridization (ϕ = +0.0124). These alternatives emerged as the most balanced in terms of emissions reduction, infrastructure reuse, and cost efficiency. In contrast, decommissioning (ϕ = −0.0578) and carbon capture systems (ϕ = −0.0196) were less favorable. This study proposes a structured framework for strategic energy planning that supports a just energy transition and contributes to the United Nations Sustainable Development Goals (SDGs) 7 and 13, highlighting the need for public policies that enhance the competitiveness and scalability of sustainable alternatives. Full article
(This article belongs to the Special Issue Advanced Energy Conversion Technologies Based on Energy Physics)
Show Figures

Figure 1

20 pages, 4092 KiB  
Article
Origin of Bilinear Low Cycle Fatigue in Ti-6Al-4V Alloy: A Crystal Plasticity Study
by Haifeng Xu, Dianxi Yang, Wei Li, Zhengxiao Guo and Yinghonglin Liu
Materials 2025, 18(17), 3931; https://doi.org/10.3390/ma18173931 - 22 Aug 2025
Abstract
This study resolves the long-standing question of the origin of bilinear Low Cycle Fatigue (LCF) behavior in Ti-6Al-4V using a high-fidelity CPFEM-XFEM framework. We identify that the fundamental origin lies in a fundamental shift in the efficiency of converting macroscopic energy dissipation into [...] Read more.
This study resolves the long-standing question of the origin of bilinear Low Cycle Fatigue (LCF) behavior in Ti-6Al-4V using a high-fidelity CPFEM-XFEM framework. We identify that the fundamental origin lies in a fundamental shift in the efficiency of converting macroscopic energy dissipation into microscopic damage. This energetic efficiency is directly governed by the evolution of plastic strain heterogeneity (quantified by the Coefficient of Variation, CV). At low strain amplitudes, high strain localization (high CV) creates a highly efficient “energy funnel,” concentrating dissipated energy into a few critical grains. This manifests physically as a single-crack failure mode, where the crack initiation phase is prolonged, consuming ~80% of the total fatigue life. Conversely, at high strain amplitudes, deformation homogenization (low CV) leads to inefficient, diffuse energy dissipation across many grains. The material must therefore activate a more drastic failure mechanism—multi-site crack initiation and coalescence—to accumulate sufficient damage, reducing the initiation phase to just ~45% of the total life. Therefore, the bilinear C-M curve is the macroscopic signature of this transition from an energetically efficient, localized damage mode to an inefficient, distributed one. This work provides a quantitative, mechanism-based framework for understanding and predicting the complex fatigue behavior of advanced metallic materials. Full article
(This article belongs to the Section Mechanics of Materials)
Show Figures

Figure 1

17 pages, 267 KiB  
Article
Exploring Synergies Among European Universities, Government, Industry, and Civil Society on Promotion of Green Policies and Just Transition Facets: Empirical Evidence from Six European Countries
by Georgios A. Deirmentzoglou, Nikolaos Apostolopoulos, Sotiris Apostolopoulos, Eleni E. Anastasopoulou, Lefteris Topaloglou, Konstantinia Nikolaidou, Tsvetomira Penkova, Miguel Corbí Santamaría, Sandra Nieto-González, Dragana Radenkovic Jocic, Marina Stanojević and George Sklias
Sustainability 2025, 17(16), 7517; https://doi.org/10.3390/su17167517 - 20 Aug 2025
Viewed by 288
Abstract
This cross-country study examines how higher education institutions collaborate with government, industry, and civil society to promote the European Green Deal and Just Transition initiatives. Framed within the quadruple helix (QH) model, the research investigates emerging partnerships and the integration of green policies [...] Read more.
This cross-country study examines how higher education institutions collaborate with government, industry, and civil society to promote the European Green Deal and Just Transition initiatives. Framed within the quadruple helix (QH) model, the research investigates emerging partnerships and the integration of green policies across six European countries: Bulgaria, Cyprus, France, Greece, Serbia, and Spain. Special emphasis is placed on the strategic role of universities in advancing the environmental, social, and economic dimensions of sustainability through their initiatives. Drawing on 30 semi-structured interviews with key stakeholders, including local public officials, academics, entrepreneurs, students, and unemployed youth, the study uncovers a growing alignment between academic initiatives and national sustainability agendas. While the extent of policy integration and collaboration varies, the findings underscore the importance of universities in shaping environmental awareness, fostering green innovation, and advancing multi-actor partnerships. The study contributes to the theoretical discourse on the QH model by applying it to the field of green transition policy and offers practical recommendations for enhancing the role of universities in sustainability-oriented governance and education. Full article
24 pages, 2421 KiB  
Article
Assessing Global Responsibility: Comparative Analysis of Fairness in Energy Transition Between Developing and Developed Countries
by Jihan Ahmad As-sya’bani, Muhammad Zubair Abbas, Alzobaer Alshaeki and Herena Torio
Sustainability 2025, 17(16), 7470; https://doi.org/10.3390/su17167470 - 18 Aug 2025
Viewed by 425
Abstract
The increasing recognition of historical emissions and uneven financial capacities among developed and developing nations has highlighted the need to look for equity and fairness in global climate action. This study aims to present a revised method that enables mapping the current state [...] Read more.
The increasing recognition of historical emissions and uneven financial capacities among developed and developing nations has highlighted the need to look for equity and fairness in global climate action. This study aims to present a revised method that enables mapping the current state of fairness in the global energy transition, addressing both the contribution to the climate crisis and the burden that different countries face in coping with the climate disasters resulting from it. For this purpose, we revise various methods and indices used to measure the progress of energy transition efforts, as well as existing methodologies to appraise the responsibility for climate change and the resulting financial capacity. We propose changes to the existing methods to allow for a clearer analysis of the fairness of the global energy transition. An exemplary use of the proposed modified methodology is applied to six countries that represent developing and developed countries using publicly available data from renowned sources such as IRENA, EM-DAT, and the World Bank, showing the applicability of the method. The main trends in the results highlight the added value of the proposed method. The progress in the energy transition is evaluated in terms of fairness as a transition index by taking into account historical responsibility and financial capacity. Damage from climate-induced disasters and contribution towards climate financing are added as contextual considerations. The country’s historical emissions, GDP, NDC, financial costs of climate-induced disaster, and financing from the Green Climate Fund are used as the basis for the analysis. The findings underscore the differences in energy transition achievement, as well as the differences in pledged and deposited funds among various types of countries. The results demonstrate a disproportionate burden experienced by lower-income nations and depict the ongoing challenges in translating principles of “common but differentiated responsibilities” into concrete outcomes. This study provides an open-source and data-driven perspective that highlights the need for change in global policy discourse and also advocates for the creation of more nuanced, just, and effective approaches to accelerate the clean energy transition worldwide. Full article
(This article belongs to the Special Issue Energy Storage, Conversion and Sustainable Management)
Show Figures

Figure 1

27 pages, 1189 KiB  
Systematic Review
The Usefulness of Wearable Sensors for Detecting Freezing of Gait in Parkinson’s Disease: A Systematic Review
by Matic Gregorčič and Dejan Georgiev
Sensors 2025, 25(16), 5101; https://doi.org/10.3390/s25165101 - 16 Aug 2025
Viewed by 554
Abstract
Background: Freezing of gait (FoG) is one of the most debilitating motor symptoms in Parkinson’s disease (PD). It often leads to falls and reduces quality of life due to the risk of injury and loss of independence. Several types of wearable sensors have [...] Read more.
Background: Freezing of gait (FoG) is one of the most debilitating motor symptoms in Parkinson’s disease (PD). It often leads to falls and reduces quality of life due to the risk of injury and loss of independence. Several types of wearable sensors have emerged as promising tools for the detection of FoG in clinical and real-life settings. Objective: The main objective of this systematic review was to critically evaluate the current usability of wearable sensor technologies for FoG detection in PD patients. The focus of the study is on sensor types, sensor combinations, placement on the body and the applications of such detection systems in a naturalistic environment. Methods: PubMed, IEEE Explore and ACM digital library were searched using a search string of Boolean operators that yielded 328 results, which were screened by title and abstract. After the screening process, 43 articles were included in the review. In addition to the year of publication, authorship and demographic data, sensor types and combinations, sensor locations, ON/OFF medication states of patients, gait tasks, performance metrics and algorithms used to process the data were extracted and analyzed. Results: The number of patients in the reviewed studies ranged from a single PD patient to 205 PD patients, and just over 65% of studies have solely focused on FoG + PD patients. The accelerometer was identified as the most frequently utilized wearable sensor, appearing in more than 90% of studies, often in combination with gyroscopes (25.5%) or gyroscopes and magnetometers (20.9%). The best overall sensor configuration reported was the accelerometer and gyroscope setup, achieving nearly 100% sensitivity and specificity for FoG detection. The most common sensor placement sites on the body were the waist, ankles, shanks and feet, but the current literature lacks the overall standardization of optimum sensor locations. Real-life context for FoG detection was the focus of only nine studies that reported promising results but much less consistent performance due to increased signal noise and unexpected patient activity. Conclusions: Current accelerometer-based FoG detection systems along with adaptive machine learning algorithms can reliably and consistently detect FoG in PD patients in controlled laboratory environments. The transition of detection systems towards a natural environment, however, remains a challenge to be explored. The development of standardized sensor placement guidelines along with robust and adaptive FoG detection systems that can maintain accuracy in a real-life environment would significantly improve the usefulness of these systems. Full article
(This article belongs to the Special Issue Wearable Sensors for Postural Stability and Fall Risk Analyses)
Show Figures

Figure 1

23 pages, 2126 KiB  
Article
Sustainability Assessment of Energy System Transition Scenarios in Gotland: Integrating Techno-Economic Modeling with Environmental and Social Perspectives
by Sahar Safarian, Maria Lidberg and Mirjam Särnbratt
Energies 2025, 18(16), 4315; https://doi.org/10.3390/en18164315 - 13 Aug 2025
Viewed by 329
Abstract
Gotland has been designated by the Swedish government as a pilot region for the transition to a sustainable, fossil-free energy system by 2030. This transformation emphasizes local renewable energy production and system independence. Within this context, this study investigates the role of industrial [...] Read more.
Gotland has been designated by the Swedish government as a pilot region for the transition to a sustainable, fossil-free energy system by 2030. This transformation emphasizes local renewable energy production and system independence. Within this context, this study investigates the role of industrial waste heat as a resource to improve energy efficiency and support sector integration between electricity, heating, and industry. A mixed-methods approach was used, combining techno-economic energy system modeling, life cycle assessment, spatial GIS data, and stakeholder input. The study develops and analyzes future carbon-neutral energy scenarios for Gotland’s energy system. Industrial waste heat can significantly reduce primary energy demand, particularly in scenarios with expanded industry, carbon capture, and increased sector integration—such as through district heating. In such cases, up to 3000–4000 GWh/year of low-temperature industrial residual heat becomes available, offering substantial potential to improve overall energy efficiency. The scenarios highlight synergies and trade-offs across environmental, economic, and social dimensions, emphasizing the importance of coordinated planning. Scenarios with offshore wind enable energy exports and industrial growth but raise challenges related to emissions and public acceptance, while scenarios without cement production reduce environmental impact but weaken local economic resilience. Limitations of the study include the exclusion of global supply chain impacts and assumptions about future technological costs. The study underscores the need for integrated planning, regulatory innovation, and stakeholder collaboration to ensure a just and resilient transition for Gotland. Full article
Show Figures

Figure 1

18 pages, 1848 KiB  
Article
The Built Environment and Urban Vibrancy: A Data-Driven Study of Non-Commuters’ Destination Choices Around Metro Stations
by Yanan Liu and Hua Du
Land 2025, 14(8), 1619; https://doi.org/10.3390/land14081619 - 8 Aug 2025
Viewed by 393
Abstract
The metro railway system is pivotal not just as a crucial transportation network for daily commuters but also as a significant enhancer of urban vibrancy, especially through its role in attracting a substantial volume of non-commuters. This study focuses on non-commuting travel behaviors [...] Read more.
The metro railway system is pivotal not just as a crucial transportation network for daily commuters but also as a significant enhancer of urban vibrancy, especially through its role in attracting a substantial volume of non-commuters. This study focuses on non-commuting travel behaviors around metro stations, exploring how the built environment affects non-commuters’ destination choices. A Random Forest model is developed based on data from Chengdu, China. The model is interpreted with SHapley Additive exPlanations (SHAP) analysis. Route length, building coverage, greenery, and proximity are key factors and indicate a nonlinear impact on non-commuters’ destination choices. The impact of these factors was found to vary significantly depending on the scale and context, indicating a need for nuanced urban planning approaches. The findings highlight the need for sophisticated urban planning that balances functionality and needs in transit-oriented development, aiming to cater to non-commuters and promote sustainable, vibrant urban spaces. Full article
Show Figures

Figure 1

5 pages, 139 KiB  
Editorial
Economic Analysis and Policies in the Energy Sector
by George Halkos
Energies 2025, 18(16), 4214; https://doi.org/10.3390/en18164214 - 8 Aug 2025
Viewed by 161
Abstract
The aim of this Special Issue is to consider economic analysis in terms of the most up-to-date and advanced empirical and theoretical methods applied to energy problems. The main purpose of this Special Issue is to feature the theoretical and empirical practice of [...] Read more.
The aim of this Special Issue is to consider economic analysis in terms of the most up-to-date and advanced empirical and theoretical methods applied to energy problems. The main purpose of this Special Issue is to feature the theoretical and empirical practice of sustainable policy performance measurement. The progress of the green economy includes methodological issues in order to indicate and present spatio-temporal patterns of resource and energy use and associated pollution. Results will be discussed in support of sustainable energy policies. This Special Issue seeks the methodological framework to contribute to sustainable energy policy development, provide energy policy initiatives targeted to socio-economic goods/benefits, to capture sustainability obstacles and negative environmental impacts, and highlight links and interactions between economic and environmental systems. The expected outcome is to set targets, propose models for sustainable growth and energy policies, and analyze policy interactions. Full article
(This article belongs to the Special Issue Economic Analysis and Policies in the Energy Sector)
20 pages, 1184 KiB  
Article
Socio-Economic and Environmental Trade-Offs of Sustainable Energy Transition in Kentucky
by Sydney Oluoch, Nirmal Pandit and Cecelia Harner
Sustainability 2025, 17(15), 7133; https://doi.org/10.3390/su17157133 - 6 Aug 2025
Viewed by 369
Abstract
A just and sustainable energy transition in historically coal-dependent regions like Kentucky requires more than the adoption of new technologies and market-based solutions. This study uses a stated preferences approach to evaluate public support for various attributes of energy transition programs, revealing broad [...] Read more.
A just and sustainable energy transition in historically coal-dependent regions like Kentucky requires more than the adoption of new technologies and market-based solutions. This study uses a stated preferences approach to evaluate public support for various attributes of energy transition programs, revealing broad backing for moving away from coal, as indicated by a negative willingness to pay (WTP) for the status quo (–USD 4.63). Key findings show strong bipartisan support for solar energy, with Democrats showing the highest WTP at USD 8.29, followed closely by Independents/Others at USD 8.22, and Republicans at USD 8.08. Wind energy also garnered support, particularly among Republicans (USD 4.04), who may view it as more industry-compatible and less ideologically polarizing. Job creation was a dominant priority across political affiliations, especially for Independents (USD 9.07), indicating a preference for tangible, near-term economic benefits. Similarly, preserving cultural values tied to coal received support among Independents/Others (USD 4.98), emphasizing the importance of place-based identity in shaping preferences. In contrast, social support programs (e.g., job retraining) and certain post-mining land uses (e.g., recreation and conservation) were less favored, possibly due to their abstract nature, delayed benefits, and political framing. Findings from Kentucky offer insights for other coal-reliant states like Wyoming, West Virginia, Pennsylvania, Indiana, and Illinois. Ultimately, equitable transitions must integrate local voices, address cultural and economic realities, and ensure community-driven planning and investment. Full article
(This article belongs to the Special Issue Energy, Environmental Policy and Sustainable Development)
Show Figures

Figure 1

24 pages, 1751 KiB  
Article
Robust JND-Guided Video Watermarking via Adaptive Block Selection and Temporal Redundancy
by Antonio Cedillo-Hernandez, Lydia Velazquez-Garcia, Manuel Cedillo-Hernandez, Ismael Dominguez-Jimenez and David Conchouso-Gonzalez
Mathematics 2025, 13(15), 2493; https://doi.org/10.3390/math13152493 - 3 Aug 2025
Viewed by 402
Abstract
This paper introduces a robust and imperceptible video watermarking framework designed for blind extraction in dynamic video environments. The proposed method operates in the spatial domain and combines multiscale perceptual analysis, adaptive Just Noticeable Difference (JND)-based quantization, and temporal redundancy via multiframe embedding. [...] Read more.
This paper introduces a robust and imperceptible video watermarking framework designed for blind extraction in dynamic video environments. The proposed method operates in the spatial domain and combines multiscale perceptual analysis, adaptive Just Noticeable Difference (JND)-based quantization, and temporal redundancy via multiframe embedding. Watermark bits are embedded selectively in blocks with high perceptual masking using a QIM strategy, and the corresponding DCT coefficients are estimated directly from the spatial domain to reduce complexity. To enhance resilience, each bit is redundantly inserted across multiple keyframes selected based on scene transitions. Extensive simulations over 21 benchmark videos (CIF, 4CIF, HD) validate that the method achieves superior performance in robustness and perceptual quality, with an average Bit Error Rate (BER) of 1.03%, PSNR of 50.1 dB, SSIM of 0.996, and VMAF of 97.3 under compression, noise, cropping, and temporal desynchronization. The system outperforms several recent state-of-the-art techniques in both quality and speed, requiring no access to the original video during extraction. These results confirm the method’s viability for practical applications such as copyright protection and secure video streaming. Full article
(This article belongs to the Section E: Applied Mathematics)
Show Figures

Figure 1

23 pages, 694 KiB  
Article
Resilience for Just Transitions of Agroecosystems Under Climate Change: Northern Midlands and Mountains, Vietnam
by Tung Song Nguyen, Leslie Mabon, Huong Thu Thi Doan, Ha Van Le, Thu Huyen Thi Nguyen, Duan Van Vu and Dap Dinh Nguyen
World 2025, 6(3), 102; https://doi.org/10.3390/world6030102 - 30 Jul 2025
Viewed by 793
Abstract
The aim of this research is to identify policy and practice interventions that support a just transition towards resilient practices for resource-dependent communities. We focus on Thai Nguyen and Phu Tho, two provinces in the Northern Midlands and Mountains of Vietnam. The region [...] Read more.
The aim of this research is to identify policy and practice interventions that support a just transition towards resilient practices for resource-dependent communities. We focus on Thai Nguyen and Phu Tho, two provinces in the Northern Midlands and Mountains of Vietnam. The region is reliant on agriculture but is assessed as highly vulnerable to climate change. We surveyed 105 farming households. A Likert-type questionnaire asked respondents to self-assess their experiences of weather extremes and of changes they had made to their farming practices. Our results show that for both Thai Nguyen and Phu Tho, farmers see the effects of climate change on their crops. Respondents in Thai Nguyen were more likely to report technically driven adaptation and engagement with extension services. Respondents in Pho Tho were more likely to continue traditional practices. For both, use of traditional knowledge and practices was related to taking measures to adapt to climate change. Our main conclusion is that at least three actions could support a just transition to resilient livelihoods. First is incorporating natural science and traditional knowledge into decision-making for just transitions. Second is considering long-term implications of interventions that appear to support livelihoods in the short term. Third is tailoring messaging and engagement strategies to the requirements of the most vulnerable people. The main message of this study is that a just transition for resource-dependent communities will inevitably be context-specific. Even in centralized and authoritarian contexts, flexibility to adapt top-down policies to locals’ own experiences of changing climates is needed. Full article
Show Figures

Figure 1

46 pages, 2561 KiB  
Review
Lipid-Based Nanotechnologies for Delivery of Green Tea Catechins: Advances, Challenges, and Therapeutic Potential
by Stanila Stoeva-Grigorova, Nadezhda Ivanova, Yoana Sotirova, Maya Radeva-Ilieva, Nadezhda Hvarchanova and Kaloyan Georgiev
Pharmaceutics 2025, 17(8), 985; https://doi.org/10.3390/pharmaceutics17080985 - 30 Jul 2025
Viewed by 407
Abstract
Knowing the superior biochemical defense mechanisms of sessile organisms, it is not hard to believe the cure for any human sickness might be hidden in nature—we “just” have to identify it and make it safely available in the right dose to our organs [...] Read more.
Knowing the superior biochemical defense mechanisms of sessile organisms, it is not hard to believe the cure for any human sickness might be hidden in nature—we “just” have to identify it and make it safely available in the right dose to our organs and cells that are in need. For decades, green tea catechins (GTCs) have been a case in point. Because of their low redox potential and favorable positioning of hydroxyl groups, these flavonoid representatives (namely, catechin—C, epicatechin—EC, epicatechin gallate—ECG, epigallocatechin—EGC, epigallocatechin gallate—EGCG) are among the most potent plant-derived (and not only) antioxidants. The proven anti-inflammatory, neuroprotective, antimicrobial, and anticarcinogenic properties of these phytochemicals further contribute to their favorable pharmacological profile. Doubtlessly, GTCs hold the potential to “cope” with the majority of today‘s socially significant diseases, yet their mass use in clinical practice is still limited. Several factors related to the compounds’ membrane penetrability, chemical stability, and solubility overall determine their low bioavailability. Moreover, the antioxidant-to-pro-oxidant transitioning behavior of GTCs is highly conditional and, to a certain degree, unpredictable. The nanoparticulate delivery systems represent a logical approach to overcoming one or more of these therapeutic challenges. This review particularly focuses on the lipid-based nanotechnologies known to be a leading choice when it comes to drug permeation enhancement and not drug release modification nor drug stabilization solely. It is our goal to present the privileges of encapsulating green tea catechins in either vesicular or particulate lipid carriers with respect to the increasingly popular trends of advanced phytotherapy and functional nutrition. Full article
Show Figures

Graphical abstract

22 pages, 1111 KiB  
Article
Dynamics of Using Digital Technologies in Agroecological Settings: A Case Study Approach
by Harika Meesala and Gianluca Brunori
Agriculture 2025, 15(15), 1636; https://doi.org/10.3390/agriculture15151636 - 29 Jul 2025
Viewed by 411
Abstract
The main objective of this study is to offer fresh empirical insight into the evolving relationship between digitalisation and agroecology by examining Mulini Di Segalari, a biodynamic vineyard in Italy. While much of the existing literature positions digital agriculture as potentially misaligned with [...] Read more.
The main objective of this study is to offer fresh empirical insight into the evolving relationship between digitalisation and agroecology by examining Mulini Di Segalari, a biodynamic vineyard in Italy. While much of the existing literature positions digital agriculture as potentially misaligned with agroecological principles, this case study unveils how digital tools can actively reinforce agroecological practices when embedded within supportive socio-technical networks. Novel findings of this study highlight how the use of digital technologies supported agroecological practices and led to the reconfiguration of social relations, knowledge systems, and governance structures within the farm. Employing a technographic approach revealed that the farm’s transformation was driven not just by technology but through collaborative arrangements involving different stakeholders. These interactions created new routines, roles, and information flows, supporting a more distributed and participatory model of innovation. By demonstrating how digital tools can catalyse agroecological transitions in a context-sensitive and socially embedded manner, this study challenges the binary framings of technology versus ecology and calls for a more nuanced understanding of digitalisation as a socio-technical process. Full article
Show Figures

Figure 1

20 pages, 3170 KiB  
Article
Sensorless SPMSM Control for Heavy Handling Machines Electrification: An Innovative Proposal
by Marco Bassani, Andrea Toscani and Carlo Concari
Energies 2025, 18(15), 4021; https://doi.org/10.3390/en18154021 - 28 Jul 2025
Viewed by 358
Abstract
The electrification of road vehicles is a relatively mature sector, while other areas of mobility, such as construction machinery, are just beginning their transition to electric solutions. This work presents the design and realization of an integrated drive system specifically developed for retrofitting [...] Read more.
The electrification of road vehicles is a relatively mature sector, while other areas of mobility, such as construction machinery, are just beginning their transition to electric solutions. This work presents the design and realization of an integrated drive system specifically developed for retrofitting fan drives in heavy machinery, like bulldozers and tractors, utilizing existing 48 VDC batteries. By replacing or complementing internal combustion and hydraulic technologies with electric solutions, significant advantages in efficiency, reduced environmental impact, and versatility can be achieved. Focusing on the fan drive system addresses the critical challenge of thermal management in high ambient temperatures and harsh environments, particularly given the high current requirements for 3kW-class applications. A sensorless architecture has been selected to enhance reliability by eliminating mechanical position sensors. The developed fan drive has been extensively tested both on a braking bench and in real-world applications, demonstrating its effectiveness and robustness. Future work will extend this prototype to electrify additional onboard hydraulic motors in these machines, further advancing the electrification of heavy-duty equipment and improving overall efficiency and environmental impact. Full article
(This article belongs to the Special Issue Electronics for Energy Conversion and Renewables)
Show Figures

Figure 1

20 pages, 1026 KiB  
Article
Spatial Variations in Perceptions of Decarbonization Impacts and Public Acceptance of the Bioeconomy in Western Macedonia
by Christina-Ioanna Papadopoulou, Stavros Kalogiannidis, Dimitrios Kalfas, Efstratios Loizou and Fotios Chatzitheodoridis
Land 2025, 14(8), 1533; https://doi.org/10.3390/land14081533 - 25 Jul 2025
Viewed by 255
Abstract
This study examines the regional disparities in public perceptions of decarbonization and the acceptance of the bioeconomy within Western Macedonia, a Greek region undergoing structural economic change. While the environmental benefits of decarbonization, such as reduced carbon emissions and improved air quality, are [...] Read more.
This study examines the regional disparities in public perceptions of decarbonization and the acceptance of the bioeconomy within Western Macedonia, a Greek region undergoing structural economic change. While the environmental benefits of decarbonization, such as reduced carbon emissions and improved air quality, are widely acknowledged, perceptions of economic and social outcomes, including investments, new business development, and policy support, vary significantly across sub-regions. To this end, a structured survey was conducted among 765 residents, utilizing Likert-scale items to assess attitudes, with demographic data providing a contextual framework. Statistical analyses, incorporating techniques such as one-way analysis of variance (ANOVA), Kruskal–Wallis, and multiple regression, were employed to explore spatial variations and identify the primary drivers of bioeconomy acceptance. The results indicate that perceived government action, visible investment, new enterprises, and a positive view of public sentiment are all significant predictors of acceptance, with institutional support showing the strongest influence. The findings reveal that certain areas feel less engaged in the transition, expressing skepticism about its benefits, while others report more optimism. This disparity in perception underscores the necessity for targeted policy interventions to ensure inclusive and equitable participation. The study emphasizes the necessity for regionally responsive governance, enhanced communication strategies, and tangible local development initiatives to cultivate public trust and support. The study makes a significant contribution to the broader discourse on just transitions by emphasizing the role of place-based perceptions in shaping sustainable change. Full article
Show Figures

Figure 1

Back to TopTop