Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = isolated dentin defect

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1329 KiB  
Review
New Approach to Addison Disease: Oral Manifestations Due to Endocrine Dysfunction and Comorbidity Burden
by Narcis Mihăiţă Bugălă, Mara Carsote, Loredana Elena Stoica, Dana Maria Albulescu, Mihaela Jana Ţuculină, Smaranda Adelina Preda, Ancuta-Ramona Boicea and Dragoș Ovidiu Alexandru
Diagnostics 2022, 12(9), 2080; https://doi.org/10.3390/diagnostics12092080 - 28 Aug 2022
Cited by 47 | Viewed by 12120
Abstract
This review highlights oral anomalies with major clinical impact in Addison disease (AD), including dental health and dermatologic features, through a dual perspective: pigmentation issues and AD comorbidities with oral manifestations. Affecting 92% of AD patients, cutaneomucosal hyperpigmentation is synchronous with or precedes [...] Read more.
This review highlights oral anomalies with major clinical impact in Addison disease (AD), including dental health and dermatologic features, through a dual perspective: pigmentation issues and AD comorbidities with oral manifestations. Affecting 92% of AD patients, cutaneomucosal hyperpigmentation is synchronous with or precedes general manifestations by up to a decade, underlying melanocytic infiltration of the basal epidermal layer; melanophages in the superficial dermis; and, rarely, acanthosis, perivascular lymphocytic infiltrate, and hyperkeratosis. Intraoral pigmentation might be the only sign of AD; thus, early recognition is mandatory, and biopsy is helpful in selected cases. The buccal area is the most affected location; other sites are palatine arches, lips, gums, and tongue. Pigmented oral lesions are patchy or diffuse; mostly asymptomatic; and occasionally accompanied by pain, itchiness, and burn-like lesions. Pigmented lingual patches are isolated or multiple, located on dorsal and lateral areas; fungiform pigmented papillae are also reported in AD individuals. Dermoscopy examination is particularly indicated for fungal etiology; yet, it is not routinely performed. AD’s comorbidity burden includes the cluster of autoimmune polyglandular syndrome (APS) type 1 underlying AIRE gene malfunction. Chronic cutaneomucosal candidiasis (CMC), including oral CMC, represents the first sign of APS1 in 70–80% of cases, displaying autoantibodies against interleukin (IL)-17A, IL-17F ± IL-22, and probably a high mucosal concentration of interferon (IFN)-γ. CMC is prone to systemic candidiasis, representing a procarcinogenic status due to Th17 cell anomalies. In APS1, the first cause of mortality is infections (24%), followed by oral and esophageal cancers (15%). Autoimmune hypoparathyroidism (HyP) is the earliest endocrine element in APS1; a combination of CMC by the age of 5 years and dental enamel hypoplasia (the most frequent dental complication of pediatric HyP) by the age of 15 is an indication for HyP assessment. Children with HyP might experience short dental roots, enamel opacities, hypodontia, and eruption dysfunctions. Copresence of APS-related type 1 diabetes mellitus (DM) enhances the risk of CMC, as well as periodontal disease (PD). Anemia-related mucosal pallor is related to DM, hypothyroidism, hypogonadism, corresponding gastroenterological diseases (Crohn’s disease also presents oral ulceration (OU), mucogingivitis, and a 2–3 times higher risk of PD; Biermer anemia might cause hyperpigmentation by itself), and rheumatologic diseases (lupus induces OU, honeycomb plaques, keratotic plaques, angular cheilitis, buccal petechial lesions, and PD). In more than half of the patients, associated vitiligo involves depigmentation of oral mucosa at different levels (palatal, gingival, alveolar, buccal mucosa, and lips). Celiac disease may manifest xerostomia, dry lips, OU, sialadenitis, recurrent aphthous stomatitis and dental enamel defects in children, a higher prevalence of caries and dentin sensitivity, and gingival bleeding. Oral pigmented lesions might provide a useful index of suspicion for AD in apparently healthy individuals, and thus an adrenocorticotropic hormone (ACTH) stimulation is useful. The spectrum of autoimmune AD comorbidities massively complicates the overall picture of oral manifestations. Full article
(This article belongs to the Section Pathology and Molecular Diagnostics)
Show Figures

Figure 1

10 pages, 2381 KiB  
Article
Non-Syndromic Dentinogenesis Imperfecta Caused by Mild Mutations in COL1A2
by Yejin Lee, Youn Jung Kim, Hong-Keun Hyun, Jae-Cheoun Lee, Zang Hee Lee and Jung-Wook Kim
J. Pers. Med. 2021, 11(6), 526; https://doi.org/10.3390/jpm11060526 - 8 Jun 2021
Cited by 9 | Viewed by 4374
Abstract
Hereditary dentin defects can be categorized as a syndromic form predominantly related to osteogenesis imperfecta (OI) or isolated forms without other non-oral phenotypes. Mutations in the gene encoding dentin sialophosphoprotein (DSPP) have been identified to cause dentinogenesis imperfecta (DGI) Types II and III [...] Read more.
Hereditary dentin defects can be categorized as a syndromic form predominantly related to osteogenesis imperfecta (OI) or isolated forms without other non-oral phenotypes. Mutations in the gene encoding dentin sialophosphoprotein (DSPP) have been identified to cause dentinogenesis imperfecta (DGI) Types II and III and dentin dysplasia (DD) Type II. While DGI Type I is an OI-related syndromic phenotype caused mostly by monoallelic mutations in the genes encoding collagen type I alpha 1 chain (COL1A1) and collagen type I alpha 2 chain (COL1A2). In this study, we recruited families with non-syndromic dentin defects and performed candidate gene sequencing for DSPP exons and exon/intron boundaries. Three unrelated Korean families were further analyzed by whole-exome sequencing due to the lack of the DSPP mutation, and heterozygous COL1A2 mutations were identified: c.3233G>A, p.(Gly1078Asp) in Family 1 and c.1171G>A, p.(Gly391Ser) in Family 2 and 3. Haplotype analysis revealed different disease alleles in Families 2 and 3, suggesting a mutational hotspot. We suggest expanding the molecular genetic etiology to include COL1A2 for isolated dentin defects in addition to DSPP. Full article
(This article belongs to the Special Issue Molecular Diagnosis and New Therapeutic Approach of Oral Diseases)
Show Figures

Figure 1

6 pages, 1951 KiB  
Case Report
Glycogen Storage Disease Ib and Severe Periodontal Destruction: A Case Report
by Rui Ma, Fardad Moein Vaziri, Gregory J. Sabino, Nima D. Sarmast, Steven M. Zove, Vincent J. Iacono and Julio A. Carrion
Dent. J. 2018, 6(4), 53; https://doi.org/10.3390/dj6040053 - 3 Oct 2018
Cited by 7 | Viewed by 5808
Abstract
Background: Glycogen storage diseases (GSDs) are genetic disorders that result from defects in the processing of glycogen synthesis or breakdown within muscles, liver, and other cell types. It also manifests with impaired neutrophil chemotaxis and neutropenic episodes which results in severe destruction [...] Read more.
Background: Glycogen storage diseases (GSDs) are genetic disorders that result from defects in the processing of glycogen synthesis or breakdown within muscles, liver, and other cell types. It also manifests with impaired neutrophil chemotaxis and neutropenic episodes which results in severe destruction of the supporting dental tissues, namely the periodontium. Although GSD Type Ib cannot be cured, associated symptoms and debilitating oral manifestations of the disease can be managed through collaborative medical and dental care where early detection and intervention is of key importance. This objective of the case report was to describe a child with GSD Ib and its associated oral manifestations with microbial, immunological and histological appearances. Case Presentation: An eight-year-old Hispanic male with a history of GSD type Ib presented with extensive intraoral generalized inflammation of the gingiva, ulcerations and bleeding, and intraoral radiographic evidence of bone loss. Tannerella forsythia was readily identifiable from the biofilm samples. Peripheral blood neutrophils were isolated and a deficient host response was observed by impaired neutrophil migration. Histological evaluation of the soft and hard tissues of the periodontally affected primary teeth showed unaffected dentin and cementum. Conclusions: This case illustrates the association between GSD Ib and oral manifestations of the disease. A multi-disciplinary treatment approach was developed in order to establish healthy intraoral conditions for the patient. Review of the literature identified several cases describing GSD and its clinical and radiographic oral manifestations; however, none was identified where also microbial, immunological, and histological appearances were described. Full article
Show Figures

Figure 1

Back to TopTop