Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = isocaryophyllene

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2500 KiB  
Article
Toward the Analysis of Volatile Organic Compounds from Tomato Plants (Solanum lycopersicum L.) Treated with Trichoderma virens or/and Botrytis cinerea
by Justyna Nawrocka, Kamil Szymczak, Monika Skwarek-Fadecka and Urszula Małolepsza
Cells 2023, 12(9), 1271; https://doi.org/10.3390/cells12091271 - 27 Apr 2023
Cited by 11 | Viewed by 4312
Abstract
Gray mold caused by Botrytis cinerea causes significant losses in tomato crops. B. cinerea infection may be halted by volatile organic compounds (VOCs), which may exhibit fungistatic activity or enhance the defense responses of plants against the pathogen. The enhanced VOC generation was [...] Read more.
Gray mold caused by Botrytis cinerea causes significant losses in tomato crops. B. cinerea infection may be halted by volatile organic compounds (VOCs), which may exhibit fungistatic activity or enhance the defense responses of plants against the pathogen. The enhanced VOC generation was observed in tomato (Solanum lycopersicum L.), with the soil-applied biocontrol agent Trichoderma virens (106 spores/1 g soil), which decreased the gray mold disease index in plant leaves at 72 hpi with B. cinerea suspension (1 × 106 spores/mL). The tomato leaves were found to emit 100 VOCs, annotated and putatively annotated, assigned to six classes by the headspace GCxGC TOF-MS method. In Trichoderma-treated plants with a decreased grey mold disease index, the increased emission or appearance of 2-hexenal, (2E,4E)-2,4-hexadienal, 2-hexyn-1-ol, 3,6,6-trimethyl-2-cyclohexen-1-one, 1-octen-3-ol, 1,5-octadien-3-ol, 2-octenal, octanal, 2-penten-1-ol, (Z)-6-nonenal, prenol, and acetophenone, and 2-hydroxyacetophenone, β-phellandrene, β-myrcene, 2-carene, δ-elemene, and isocaryophyllene, and β-ionone, 2-methyltetrahydrofuran, and 2-ethyl-, and 2-pentylfuran, ethyl, butyl, and hexyl acetate were most noticeable. This is the first report of the VOCs that were released by tomato plants treated with Trichoderma, which may be used in practice against B. cinerea, although this requires further analysis, including the complete identification of VOCs and determination of their potential as agents that are capable of the direct and indirect control of pathogens. Full article
(This article belongs to the Section Plant, Algae and Fungi Cell Biology)
Show Figures

Figure 1

11 pages, 1486 KiB  
Article
Ectomycorrhizal Influence on the Dynamics of Sesquiterpene Release by Tricholoma vaccinum
by Marycolette Ndidi Ezediokpu, Katrin Krause, Maritta Kunert, Dirk Hoffmeister, Wilhelm Boland and Erika Kothe
J. Fungi 2022, 8(6), 555; https://doi.org/10.3390/jof8060555 - 24 May 2022
Cited by 6 | Viewed by 2445
Abstract
Tricholoma vaccinum is an ectomycorrhizal basidiomycete with high host specificity. The slow-growing fungus is able to produce twenty sesquiterpenes, including α-barbatene, sativene, isocaryophyllene, α-cuprenene, β-cedrene, ß-copaene, 4-epi-α-acoradiene, and chamigrene in axenic culture. For the three major compounds, Δ6-protoilludene, β-barbatene, and an [...] Read more.
Tricholoma vaccinum is an ectomycorrhizal basidiomycete with high host specificity. The slow-growing fungus is able to produce twenty sesquiterpenes, including α-barbatene, sativene, isocaryophyllene, α-cuprenene, β-cedrene, ß-copaene, 4-epi-α-acoradiene, and chamigrene in axenic culture. For the three major compounds, Δ6-protoilludene, β-barbatene, and an unidentified oxygenated sesquiterpene (m/z 218.18), changed production during co-cultivation with the ectomycorrhizal partner tree, Picea abies, could be shown with distinct dynamics. During the mycorrhizal growth of T. vaccinumP. abies, Δ6-protoilludene and the oxygenated sesquiterpene appeared at similar times, which warranted further studies of potential biosynthesis genes. In silico analyses identified a putative protoilludene synthesis gene, pie1, as being up-regulated in the mycorrhizal stage, in addition to the previously identified, co-regulated geosmin synthase, ges1. We therefore hypothesize that the sesquiterpene synthase pie1 has an important role during mycorrhization, through Δ6-protoilludene and/or its accompanied oxygenated sesquiterpene production. Full article
(This article belongs to the Special Issue Edible and Medicinal Macrofungi)
Show Figures

Figure 1

14 pages, 724 KiB  
Article
The Phytochemical Profile and Anticancer Activity of Anthemis tinctoria and Angelica sylvestris Used in Estonian Ethnomedicine
by Ain Raal, Marel Jaama, Meeme Utt, Tõnu Püssa, Vaidotas Žvikas, Valdas Jakštas, Oleh Koshovyi, Khan Viet Nguyen and Hoai Thi Nguyen
Plants 2022, 11(7), 994; https://doi.org/10.3390/plants11070994 - 5 Apr 2022
Cited by 23 | Viewed by 3579
Abstract
The aerial parts of Anthemis tinctoria L. and Angelica sylvestris L. and the roots of A. sylvestris have been used as traditional anticancer remedies in Estonian ethnomedicine. The aim of this study was to investigate content of essential oils (by gas chromatography) and [...] Read more.
The aerial parts of Anthemis tinctoria L. and Angelica sylvestris L. and the roots of A. sylvestris have been used as traditional anticancer remedies in Estonian ethnomedicine. The aim of this study was to investigate content of essential oils (by gas chromatography) and polyphenolic compounds (using two different methods of high performance liquid chromatography–mass spectrometry (HPLC–MS)) of both plant species, as well as the in vitro anti-cancer effects of their essential oils and methanolic extracts. The average (n = 5 samples) yield of essential oils was 0.15%, 0.13%, and 0.17%, respectively. The principal compounds of the essential oil from the aerial parts of A. tinctoria were palmitic acid (15.3%), p-cymene (12.6%), and α-muurolene (12.5%), and α-pinene (45.4%), p-cymene (15.5%), and β-myrcene (13.3%) in aerial parts of A. sylvestris, while isocaryophyllene oxide (31.9%), α-bisabolol (17.5%), and α-pinene (12.4%) were the main constituents in the roots. The most abundant phenolic compounds in aerial parts were the derivatives of caffeic acid, quinic acid, and quercetin; the main compounds in roots of A. sylvestris were chlorogenic acid, quinic acid, and naringenin. The strongest anticancer effects were observed in essential oils of A. sylvestris roots and aerial parts on human carcinoma in the mouth cells (KB, IC50 19.73 μg/mL and 19.84 μg/mL, respectively). The essential oil of A. tinctoria showed a strong effect on KB and LNCaP cells (27.75–29.96 μg/mL). The methanolic extracts of both plants had no effect on the cancer cells studied. Full article
(This article belongs to the Topic Natural Compounds in Plants)
Show Figures

Figure 1

48 pages, 4245 KiB  
Review
Chemopreventive Potential of Caryophyllane Sesquiterpenes: An Overview of Preliminary Evidence
by Antonella Di Sotto, Romina Mancinelli, Marco Gullì, Margherita Eufemi, Caterina Loredana Mammola, Gabriela Mazzanti and Silvia Di Giacomo
Cancers 2020, 12(10), 3034; https://doi.org/10.3390/cancers12103034 - 18 Oct 2020
Cited by 62 | Viewed by 7142
Abstract
Chemoprevention is referred to as a strategy to inhibit, suppress, or reverse tumor development and progression in healthy people along with high-risk subjects and oncologic patients through using pharmacological or natural substances. Numerous phytochemicals have been widely described in the literature to possess [...] Read more.
Chemoprevention is referred to as a strategy to inhibit, suppress, or reverse tumor development and progression in healthy people along with high-risk subjects and oncologic patients through using pharmacological or natural substances. Numerous phytochemicals have been widely described in the literature to possess chemopreventive properties, although their clinical usefulness remains to be defined. Among them, caryophyllane sesquiterpenes are natural compounds widely occurring in nature kingdoms, especially in plants, fungi, and marine environments. Several structures, characterized by a common caryophyllane skeleton with further rearrangements, have been identified, but those isolated from plant essential oils, including β-caryophyllene, β-caryophyllene oxide, α-humulene, and isocaryophyllene, have attracted the greatest pharmacological attention. Emerging evidence has outlined a complex polypharmacological profile of caryophyllane sesquiterpenes characterized by blocking, suppressing, chemosensitizing, and cytoprotective properties, which suggests a possible usefulness of these natural substances in cancer chemoprevention for both preventive and adjuvant purposes. In the present review, the scientific knowledge about the chemopreventive properties of caryophyllane sesquiterpenes and the mechanisms involved have been collected and discussed; moreover, possible structure–activity relationships have been highlighted. Although further high-quality studies are required, the promising preclinical findings and the safe pharmacological profile encourage further studies to define a clinical usefulness of caryophyllane sesquiterpenes in primary, secondary, or tertiary chemoprevention. Full article
(This article belongs to the Special Issue Medicinal Plants and Their Active Ingredients in Cancer)
Show Figures

Graphical abstract

Back to TopTop