Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = island-style FPGA

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3436 KiB  
Article
Research on Hex Programmable Interconnect Points Test in Island-Style FPGA
by Fan Zhang, Chenguang Guo, Shifeng Zhang, Lei Chen, Xuewu Li, Huabo Sun, Yufeng Meng and Qiliang Chen
Electronics 2020, 9(12), 2177; https://doi.org/10.3390/electronics9122177 - 18 Dec 2020
Cited by 5 | Viewed by 2911
Abstract
With the decreasing size of manufacturing process, the scale of island-style field programmable gate array (FPGA) becomes larger, which leads to the increasing complexity of FPGA routing resources, especially hex programmable interconnect points (PIPs). Hex PIPs which span six tiles of the island-style [...] Read more.
With the decreasing size of manufacturing process, the scale of island-style field programmable gate array (FPGA) becomes larger, which leads to the increasing complexity of FPGA routing resources, especially hex programmable interconnect points (PIPs). Hex PIPs which span six tiles of the island-style FPGA have complex interconnect rules. Accordingly, research on complete hex PIPs test is rarely involved in the study of routing resources test. Therefore, this paper analyzes the hex PIPs architecture of the island-style FPGA, summarizes the interconnect rules of the hex PIPs mathematically in a two-dimensional coordinate system, and presents two proper test algorithms at the same time. The hex PIPs are divided into three directions, that is, horizontal, vertical, and oblique. According to the proposed coordinate equations, a cycle test structure in the horizontal and vertical directions and a test structure with partial-cascade patterns in the oblique direction are designed respectively. It is concluded that the proposed methods can achieve 100% fault coverage for the hex PIPs test in all directions, and the configuration number for hex lines test with the same methods is significantly decreased than previous researches. Full article
(This article belongs to the Section Circuit and Signal Processing)
Show Figures

Figure 1

23 pages, 3333 KiB  
Article
Stochastic-Based Spin-Programmable Gate Array with Emerging MTJ Device Technology
by Yu Bai and Mingjie Lin
J. Low Power Electron. Appl. 2016, 6(3), 15; https://doi.org/10.3390/jlpea6030015 - 12 Aug 2016
Cited by 3 | Viewed by 7788
Abstract
This paper describes the stochastic-based Spin-Programmable Gate Array (SPGA), an innovative architecture attempting to exploit the stochastic switching behavior newly found in emerging spintronic devices for reconfigurable computing. While many recently studies have investigated using Spin Transfer Torque Memory (STTM) devices to replace [...] Read more.
This paper describes the stochastic-based Spin-Programmable Gate Array (SPGA), an innovative architecture attempting to exploit the stochastic switching behavior newly found in emerging spintronic devices for reconfigurable computing. While many recently studies have investigated using Spin Transfer Torque Memory (STTM) devices to replace configuration memory in field programmable gate arrays (FPGAs), our study, for the first time, attempts to use the quantum-induced stochastic property exhibited by spintronic devices directly for reconfiguration and logic computation. Specifically, the SPGA was designed from scratch for high performance, routability, and ease-of-use. It supports variable-granularity multiple-input-multiple-output (MIMO) logic blocks and variable-length bypassing interconnects with a symmetrical structure. Due to its unconventional architectural features, the SPGA requires several major modifications to be made in the standard VPR placement/routing CAD flow, which include a new technology mapping algorithm based on computing (k, l)-cut, a new placement algorithm, and a modified delay-based routing procedure.Previous studies have shown that, simply replacing reconfiguration memory bits with spintronic devices, the conventional 2D island-style FPGA architecture can achieve approximately 5 times area savings, 2 times speedup and 1.6 times power savings. Our mixed-mode simulation results have shown that, with FPGA architecture innovations, on average, a SPGA can further achieve more than 10 times improvement in logic density, about 5 times improvement in average net delay, and about 5 times improvement in the critical-path delay for the largest 12 MCNC benchmark circuits over an island-style baseline FPGA with spintronic configuration bits. Full article
(This article belongs to the Special Issue Recent Advances in Emerging Low Power Circuits and Systems)
Show Figures

Graphical abstract

Back to TopTop