Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = isabgol

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 4935 KB  
Article
Nano Milk Protein-Mucilage Complexes: Characterization and Anticancer Effect
by Ahmed Ali Abd El-Maksoud, Amal I. A. Makhlouf, Ammar B. Altemimi, Ismail H. Abd El-Ghany, Amr Nassrallah, Francesco Cacciola and Tarek Gamal Abedelmaksoud
Molecules 2021, 26(21), 6372; https://doi.org/10.3390/molecules26216372 - 21 Oct 2021
Cited by 13 | Viewed by 3822
Abstract
The anticancer activity of natural compounds has recently attracted multidisciplinary research. In this study, the complexation of milk proteins (MP) with Isabgol husk mucilage (IHM) and Ziziphus spina-christi mucilage (NabM) was investigated. In this context, the physicochemical properties of milk protein mucilage complexes [...] Read more.
The anticancer activity of natural compounds has recently attracted multidisciplinary research. In this study, the complexation of milk proteins (MP) with Isabgol husk mucilage (IHM) and Ziziphus spina-christi mucilage (NabM) was investigated. In this context, the physicochemical properties of milk protein mucilage complexes (MPMC) including pH, Carr’s index, water solubility, and water absorption indices were measured, and the flow behavior was studied. In addition, the amino acid profile, protein digestibility, and phenolic and flavonoids content of MPMC were explored, and the microstructure of the complexes was visualized using transmission electron microscopy. The antioxidant and anticancer potencies of MPMC against two cancerous cell lines, human liver cancer HEPG-2 and breast cancer MCF-7, in comparison with two normal cell lines, namely, Bj-1 and MCF-12F, were tested using neutral red uptake assay. The results revealed that MPMC had scavenging activity against DPPH, ABTS, and HS radicals. Moreover, MPMC has the potential to prevent DNA damage induced by oxidative stress in Type-Fenton’s reaction. The results of the neutral red assay showed significant growth inhibition of both HEPG-2, MCF-7, whereas no significant cytotoxic effect was detected against Bj-1 and MCF-12F. RT-qPCR results indicated MPMC stimulated apoptosis as revealed by the upregulation of the pro-apoptosis gene markers Casepase-3, p53, Bax. Meanwhile, the anti-apoptosis Bcl-2 gene was downregulated. However, no significant difference was observed in normal cell lines treated with MPMC. In conclusion, MPMC can be considered as a promising anticancer entity that can be used in the development of novel cancer therapeutics with comparable activity and minimal side effects compared to conventional cancer chemotherapies. Full article
Show Figures

Figure 1

23 pages, 17983 KB  
Article
Deciphering Plantago ovata Forsk Leaf Extract Mediated Distinct Germination, Growth and Physio-Biochemical Improvements under Water Stress in Maize (Zea mays L.) at Early Growth Stage
by Muhammad Nawaz, Xiukang Wang, Muhammad Hamzah Saleem, Muhammad Hafeez Ullah Khan, Javaria Afzal, Sajid Fiaz, Sajjad Ali, Hasnain Ishaq, Aamir Hamid Khan, Nagina Rehman, Shadab Shaukat and Shafaqat Ali
Agronomy 2021, 11(7), 1404; https://doi.org/10.3390/agronomy11071404 - 13 Jul 2021
Cited by 38 | Viewed by 4565
Abstract
Use of Plantago ovata Forsk leaf (also known as blond plantain or isabgol) extract is a novel approach for ameliorating water stress in various agronomic crops such as maize (Zea mays L.). To examine the potential roles of P. ovata extract (0, [...] Read more.
Use of Plantago ovata Forsk leaf (also known as blond plantain or isabgol) extract is a novel approach for ameliorating water stress in various agronomic crops such as maize (Zea mays L.). To examine the potential roles of P. ovata extract (0, 20 and 40%) in increasing seed germination, plant growth, photosynthetic measurements, stomatal properties, oxidative stress and antioxidant response, ions uptake and the relationship between studied parameters, we investigated the impacts of its short-term seed priming on Z. mays L. elite cultivar “Cimmyt-Pak” under a control environment and a water deficit stress environment (induced by PEG). It was evident that water deficit stress conditions induced a negative impact on plant growth, stomatal properties and ion uptake in different organs of Z. mays. The decrease in growth-related attributes might be due to overproduction of oxidative stress biomarkers, i.e., malondialdehyde (MDA) contents, hydrogen peroxide (H2O2) initiation, and electrolyte leakage (%), which was also overcome by the enzymatic antioxidants, i.e., superoxidase dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) and non-enzymatic antioxidants, which increased under the water stress environment. However, seed priming with P. ovata extract positively increased germination rate and growth profile, and protected photosynthetic apparatus and stomatal properties by decreasing oxidative stress indicators and increasing activities of antioxidant compounds. Our results also depicted that the optimum concentration of P. ovata extract for Z. mays seedlings under water stress conditions was 20%, while a further increase in P. ovata extract (40%) induced a non-significant negative impact on growth and biomass of Z. mays seedling. In addition, the effect was more promising on Z. mays seedlings when grown under controlled conditions. Here, we concluded that the understanding of the role of seed priming with P. ovata extract in the increment of growth-related attributes, photosynthetic apparatus (Pn, Gs, Ts and Ci) and nutrient uptake (Ca2+, Fe2+, P and Mg2+) introduces new possibilities for their effective use in water deficit stress environments and shows a promising foundation for Z. mays tolerance against water deficit stress conditions. Full article
Show Figures

Figure 1

18 pages, 729 KB  
Article
Rapid Development of Microsatellite Markers for Plantago ovata Forsk.: Using Next Generation Sequencing and Their Cross-Species Transferability
by Ranbir Singh Fougat, Chaitanya Joshi, Kalyani Kulkarni, Sushil Kumar, Anand Patel, Amar Sakure and Jigar Mistry
Agriculture 2014, 4(2), 199-216; https://doi.org/10.3390/agriculture4020199 - 20 Jun 2014
Cited by 12 | Viewed by 10100
Abstract
Isabgol (Plantago ovata Forsk.) is an important medicinal plant having high pharmacological activity in its seed husk, which is substantially used in the food, beverages and packaging industries. Nevertheless, isabgol lags behind in research, particularly for genomic resources, like molecular markers, genetic [...] Read more.
Isabgol (Plantago ovata Forsk.) is an important medicinal plant having high pharmacological activity in its seed husk, which is substantially used in the food, beverages and packaging industries. Nevertheless, isabgol lags behind in research, particularly for genomic resources, like molecular markers, genetic maps, etc. Presently, molecular markers can be easily developed through next generation sequencing technologies, more efficiently, cost effectively and in less time than ever before. This study was framed keeping in view the need to develop molecular markers for this economically important crop by employing a microsatellite enrichment protocol using a next generation sequencing platform (ion torrent PGM™) to obtain simple sequence repeats (SSRs) for Plantago ovata for the very first time. A total of 3447 contigs were assembled, which contained 249 SSRs. Thirty seven loci were randomly selected for primer development; of which, 30 loci were successfully amplified. The developed microsatellite markers showed the amplification of the expected size and cross-amplification in another six species of Plantago. The SSR markers were unable to show polymorphism within P. ovata, suggesting that low variability exists within genotypes of P. ovata. This study suggests that PGM™ sequencing is a rapid and cost-effective tool for developing SSR markers for non-model species, and the markers so-observed could be useful in the molecular breeding of P. ovata. Full article
Show Figures

Figure 1

Back to TopTop