Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = intra-region probability maximization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4630 KiB  
Article
Stochastic Control for Intra-Region Probability Maximization of Multi-Machine Power Systems Based on the Quasi-Generalized Hamiltonian Theory
by Xue Lin, Lixia Sun, Ping Ju and Hongyu Li
Energies 2020, 13(1), 167; https://doi.org/10.3390/en13010167 - 30 Dec 2019
Cited by 4 | Viewed by 2197
Abstract
With the penetration of renewable generation, electric vehicles and other random factors in power systems, the stochastic disturbances are increasing significantly, which are necessary to be handled for guarantying the security of systems. A novel stochastic optimal control strategy is proposed in this [...] Read more.
With the penetration of renewable generation, electric vehicles and other random factors in power systems, the stochastic disturbances are increasing significantly, which are necessary to be handled for guarantying the security of systems. A novel stochastic optimal control strategy is proposed in this paper to reduce the impact of such stochastic continuous disturbances on power systems. The proposed method is effective in solving the problems caused by the stochastic continuous disturbances and has two significant advantages. First, a simplified and effective solution is proposed to analyze the system influenced by the stochastic disturbances. Second, a novel optimal control strategy is proposed in this paper to effectively reduce the impact of stochastic continuous disturbances. To be specific, a novel excitation controlled power systems model with stochastic disturbances is built in the quasi-generalized Hamiltonian form, which is further simplified into a lower-dimension model through the stochastic averaging method. Based on this Itô equation, a novel optimal control strategy to achieve the intra-region probability maximization is established for power systems by using the dynamic programming method. Finally, the intra-region probability increases in controlled systems, which confirms the effectiveness of the proposed control strategy. The proposed control method has advantages on controlling the fluctuation of system state variables within a desired region under the influence of stochastic disturbances, which means improving the security of stochastic systems. With more stochasticity in the future, the proposed control method based on the stochastic theory will play a novel way to relieve the impact of stochastic disturbances. Full article
Show Figures

Figure 1

18 pages, 835 KiB  
Article
Finger-Vein Verification Based on LSTM Recurrent Neural Networks
by Huafeng Qin and Peng Wang
Appl. Sci. 2019, 9(8), 1687; https://doi.org/10.3390/app9081687 - 24 Apr 2019
Cited by 30 | Viewed by 3453
Abstract
Finger-vein biometrics has been extensively investigated for personal verification. A challenge is that the finger-vein acquisition is affected by many factors, which results in many ambiguous regions in the finger-vein image. Generally, the separability between vein and background is poor in such regions. [...] Read more.
Finger-vein biometrics has been extensively investigated for personal verification. A challenge is that the finger-vein acquisition is affected by many factors, which results in many ambiguous regions in the finger-vein image. Generally, the separability between vein and background is poor in such regions. Despite recent advances in finger-vein pattern segmentation, current solutions still lack the robustness to extract finger-vein features from raw images because they do not take into account the complex spatial dependencies of vein pattern. This paper proposes a deep learning model to extract vein features by combining the Convolutional Neural Networks (CNN) model and Long Short-Term Memory (LSTM) model. Firstly, we automatically assign the label based on a combination of known state of the art handcrafted finger-vein image segmentation techniques, and generate various sequences for each labeled pixel along different directions. Secondly, several Stacked Convolutional Neural Networks and Long Short-Term Memory (SCNN-LSTM) models are independently trained on the resulting sequences. The outputs of various SCNN-LSTMs form a complementary and over-complete representation and are conjointly put into Probabilistic Support Vector Machine (P-SVM) to predict the probability of each pixel of being foreground (i.e., vein pixel) given several sequences centered on it. Thirdly, we propose a supervised encoding scheme to extract the binary vein texture. A threshold is automatically computed by taking into account the maximal separation between the inter-class distance and the intra-class distance. In our approach, the CNN learns robust features for vein texture pattern representation and LSTM stores the complex spatial dependencies of vein patterns. So, the pixels in any region of a test image can then be classified effectively. In addition, the supervised information is employed to encode the vein patterns, so the resulting encoding images contain more discriminating features. The experimental results on one public finger-vein database show that the proposed approach significantly improves the finger-vein verification accuracy. Full article
(This article belongs to the Special Issue Advanced Biometrics with Deep Learning)
Show Figures

Figure 1

Back to TopTop