Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = interstitial vacancy photogeneration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 9269 KiB  
Article
Nanoscale Vacancy-Mediated Aggregation, Dissociation, and Splitting of Nitrogen Centers in Natural Diamond Excited by Visible-Range Femtosecond Laser Pulses
by Sergey Kudryashov, Galina Kriulina, Pavel Danilov, Evgeny Kuzmin, Alexey Kirichenko, Nikolay Rodionov, Roman Khmelnitskii, Jiajun Chen, Elena Rimskaya and Vladimir Shur
Nanomaterials 2023, 13(2), 258; https://doi.org/10.3390/nano13020258 - 7 Jan 2023
Cited by 5 | Viewed by 2280
Abstract
Natural IaA+B diamonds were exposed in their bulk by multiple 0.3 ps, 515 nm laser pulses focused by a 0.25 NA micro-objective, producing in the prefocal region (depth of 20–50 μm) a bulk array of photoluminescent nanostructured microtracks at variable laser exposures and [...] Read more.
Natural IaA+B diamonds were exposed in their bulk by multiple 0.3 ps, 515 nm laser pulses focused by a 0.25 NA micro-objective, producing in the prefocal region (depth of 20–50 μm) a bulk array of photoluminescent nanostructured microtracks at variable laser exposures and pulse energies. These micromarks were characterized at room (25°) and liquid nitrogen cooling (−120 °C) temperatures through stationary 3D scanning confocal photoluminescence (PL) microspectroscopy at 405 and 532 nm excitation wavelengths. The acquired PL spectra exhibit a linearly increasing pulse-energy-dependent yield in the range of 575 to 750 nm (NV0, NV centers) at the expense of the simultaneous reductions in the blue–green (450–570 nm; N3a, H4, and H3 centers) and near-IR (741 nm; V0 center) PL yield. A detailed analysis indicates a low-energy rise in PL intensity for B2-related N3a, H4, and H3 centers, while at higher, above-threshold pulse energies it decreases for the H4, H3, and N3a centers, converting into NV centers, with the laser exposure effect demonstrating the same trend. The intrinsic and (especially) photo-generated vacancies were considered to drive their attachment as separate species to nitrogen centers at lower vacancy concentrations, while at high vacancy concentrations the concerted splitting of highly aggregated nitrogen centers by the surrounding vacancies could take place in favor of resulting NV centers. Full article
(This article belongs to the Special Issue Nanophotonics Enabled by Femtosecond Lasers)
Show Figures

Figure 1

19 pages, 1863 KiB  
Review
Recent Advances in Ternary Metal Oxides Modified by N Atom for Photocatalysis
by Jingwen Wang, Takuya Hasegawa, Yusuke Asakura and Shu Yin
Catalysts 2022, 12(12), 1568; https://doi.org/10.3390/catal12121568 - 2 Dec 2022
Cited by 13 | Viewed by 3472
Abstract
Ternary metal oxides (TMOs) with flexible band structures are of significant potential in the field of photocatalysis. The efficient utilization of renewable and green solar energy is of great importance to developing photocatalysts. To date, a wide range of TMOs systems has been [...] Read more.
Ternary metal oxides (TMOs) with flexible band structures are of significant potential in the field of photocatalysis. The efficient utilization of renewable and green solar energy is of great importance to developing photocatalysts. To date, a wide range of TMOs systems has been developed as photocatalysts for water and air purification, but their practical applications in visible light-assisted chemical reactions are hindered mainly by its poor visible light absorption capacity. Introduction of N atoms into TMOs can narrow the band-gap energy to a lower value, enhance the absorption of visible light and suppress the recombination rate of photogenerated electrons and holes, thus improving the photocatalytic performance. This review summarizes the recent research on N-modified TMOs, including the influence of N doping amounts, N doping sites, and N-induced phase transformation. The introduced N greatly tuned the optical properties, electronic structure, and photocatalytic activity of the TMOs. The optimal N concentration and the influence of N doping sites are investigated. The substitutional N and interstitial N contributed differently to the band gap and electron transport. The introduced N can tune the vacancies in TMOs due to the charge compensation, which is vital for inducing different activity and selectivity. The topochemical ammonolysis process can convert TMOs to oxynitride with visible light absorption. By altering the band structures, these oxynitride materials showed enhanced photocatalytic activity. This review provides an overview of recent advances in N-doped TMOs and oxynitrides derived from TMOs as photocatalysts for environmental applications, as well as some relevant pointers for future burgeoning research development. Full article
(This article belongs to the Special Issue State-of-the-Art Nanostructured Catalysts in Asia)
Show Figures

Graphical abstract

8 pages, 2846 KiB  
Article
Up/Down-Scaling Photoluminescent Micromarks Written in Diamond by Ultrashort Laser Pulses: Optical Photoluminescent and Structural Raman Imaging
by Pavel Danilov, Evgeny Kuzmin, Elena Rimskaya, Jiajun Chen, Roman Khmelnitskii, Alexey Kirichenko, Nikolay Rodionov and Sergey Kudryashov
Micromachines 2022, 13(11), 1883; https://doi.org/10.3390/mi13111883 - 1 Nov 2022
Cited by 7 | Viewed by 1972
Abstract
Elongated photoluminescent micromarks were inscribed inside a IaAB-type natural diamond in laser filamentation regime by multiple 515 nm, 0.3 ps laser pulses tightly focused by a 0.25 NA micro-objective. The micromark length, diameter and photoluminescence contrast scaled as a function of laser pulse [...] Read more.
Elongated photoluminescent micromarks were inscribed inside a IaAB-type natural diamond in laser filamentation regime by multiple 515 nm, 0.3 ps laser pulses tightly focused by a 0.25 NA micro-objective. The micromark length, diameter and photoluminescence contrast scaled as a function of laser pulse energy and exposure, coming to a saturation. Our Raman/photoluminescence confocal microscopy studies indicate no structural diamond damage in the micromarks, shown as the absent Raman intensity variation versus laser energy and exposition along the distance from the surface to the deep mark edge. In contrast, sTable 3NV (N3)-centers demonstrate the pronounced increase (up to 40%) in their 415 nm zero-phonon line photoluminescence yield within the micromarks, and an even higher—ten-fold—increase in NV0-center photoluminescence yield. Photogeneration of carbon Frenkel “interstitial–vacancy” (I–V) pairs and partial photolytic dissociation of the predominating 2N (A)-centers were suggested to explain the enhanced appearance of 3NV- and NV-centers, apparently via vacancy aggregation with the resulting N (C)-centers or, consequently, with 2N- and N-centers. Full article
(This article belongs to the Special Issue Ultrafast Laser Micro- and Nanoprocessing)
Show Figures

Figure 1

13 pages, 31233 KiB  
Article
Gas-Phase Fluorination of g-C3N4 for Enhanced Photocatalytic Hydrogen Evolution
by Lidong Sun, Yu Li and Wei Feng
Nanomaterials 2022, 12(1), 37; https://doi.org/10.3390/nano12010037 - 23 Dec 2021
Cited by 23 | Viewed by 3451
Abstract
Graphitic carbon nitride (g-C3N4) has attracted much attention because of its potential for application in solar energy conservation. However, the photocatalytic activity of g-C3N4 is limited by the rapidly photogenerated carrier recombination and insufficient solar adsorption. [...] Read more.
Graphitic carbon nitride (g-C3N4) has attracted much attention because of its potential for application in solar energy conservation. However, the photocatalytic activity of g-C3N4 is limited by the rapidly photogenerated carrier recombination and insufficient solar adsorption. Herein, fluorinated g-C3N4 (F-g-CN) nanosheets are synthesized through the reaction with F2/N2 mixed gas directly. The structural characterizations and theoretical calculations reveal that fluorination introduces N vacancy defects, structural distortion and covalent C-F bonds in the interstitial space simultaneously, which lead to mesopore formation, vacancy generation and electronic structure modification. Therefore, the photocatalytic activity of F-g-CN for H2 evolution under visible irradiation is 11.6 times higher than that of pristine g-C3N4 because of the enlarged specific area, enhanced light harvesting and accelerated photogenerated charge separation after fluorination. These results show that direct treatment with F2 gas is a feasible and promising strategy for modulating the texture and configuration of g-C3N4-based semiconductors to drastically enhance the photocatalytic H2 evolution process. Full article
(This article belongs to the Special Issue Fluorinated Nanocarbons and Their Applications)
Show Figures

Figure 1

12 pages, 7592 KiB  
Article
Strong Deep-Level-Emission Photoluminescence in NiO Nanoparticles
by Ashish Chhaganlal Gandhi and Sheng Yun Wu
Nanomaterials 2017, 7(8), 231; https://doi.org/10.3390/nano7080231 - 22 Aug 2017
Cited by 182 | Viewed by 9258
Abstract
Nickel oxide is one of the highly promising semiconducting materials, but its large band gap (3.7 to 4 eV) limits its use in practical applications. Here we report the effect of nickel/oxygen vacancies and interstitial defects on the near-band-edge (NBE) and deep-level-emission (DLE) [...] Read more.
Nickel oxide is one of the highly promising semiconducting materials, but its large band gap (3.7 to 4 eV) limits its use in practical applications. Here we report the effect of nickel/oxygen vacancies and interstitial defects on the near-band-edge (NBE) and deep-level-emission (DLE) in various sizes of nickel oxide (NiO) nanoparticles. The ultraviolet (UV) emission originated from excitonic recombination corresponding near-band-edge (NBE) transition of NiO, while deep-level-emission (DLE) in the visible region due to various structural defects such as oxygen vacancies and interstitial defects. We found that the NiO nanoparticles exhibit a strong green band emission around ~2.37 eV in all samples, covering 80% integrated intensity of PL spectra. This apparently anomalous phenomenon is attributed to photogenerated holes trapped in the deep level oxygen vacancy recombining with the electrons trapped in a shallow level located just below the conducting band. Full article
(This article belongs to the Special Issue Semiconductor Nanoparticles for Electric Device Applications)
Show Figures

Graphical abstract

Back to TopTop