Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = integrated quantum gyroscope

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 4538 KiB  
Article
Measuring Transverse Relaxation with a Single-Beam 894 nm VCSEL for Cs-Xe NMR Gyroscope Miniaturization
by Qingyang Zhao, Ruochen Zhang and Hua Liu
Sensors 2024, 24(17), 5692; https://doi.org/10.3390/s24175692 - 1 Sep 2024
Cited by 3 | Viewed by 1408
Abstract
The spin-exchange-pumped nuclear magnetic resonance gyroscope (NMRG) is a pivotal tool in quantum navigation. The transverse relaxation of atoms critically impacts the NMRG’s performance parameters and is essential for judging normal operation. Conventional methods for measuring transverse relaxation typically use dual beams, which [...] Read more.
The spin-exchange-pumped nuclear magnetic resonance gyroscope (NMRG) is a pivotal tool in quantum navigation. The transverse relaxation of atoms critically impacts the NMRG’s performance parameters and is essential for judging normal operation. Conventional methods for measuring transverse relaxation typically use dual beams, which involves complex optical path and frequency stabilization systems, thereby complicating miniaturization and integration. This paper proposes a method to construct a 133Cs parametric resonance magnetometer using a single-beam vertical-cavity surface-emitting laser (VCSEL) to measure the transverse relaxation of 129Xe and 131Xe. Based on this method, the volume of the gyroscope probe is significantly reduced to 50 cm3. Experimental results demonstrate that the constructed Cs-Xe NMRG can achieve a transverse relaxation time (T2) of 8.1 s under static conditions. Within the cell temperature range of 70 °C to 110 °C, T2 decreases with increasing temperature, while the signal amplitude inversely increases. The research lays the foundation for continuous measurement operations of miniaturized NMRGs. Full article
(This article belongs to the Special Issue Atomic Magnetic Sensors)
Show Figures

Figure 1

15 pages, 2215 KiB  
Article
On-Chip Group-IV Heisenberg-Limited Sagnac Interferometric Gyroscope at Room Temperature
by Francesco De Leonardis, Richard Soref, Martino De Carlo and Vittorio M. N. Passaro
Sensors 2020, 20(12), 3476; https://doi.org/10.3390/s20123476 - 19 Jun 2020
Cited by 4 | Viewed by 3958
Abstract
A room-temperature strip-guided “manufacturable” Silicon-on-Insulator (SOI)/GeSn integrated-photonics quantum-gyroscope chip operating at 1550 nm is proposed and analysed. We demonstrate how the entangled photons generated in Si Spontaneous Four Wave Mixing (SFWM) can be used to improve the resolution of a Sagnac interferometric gyroscope. [...] Read more.
A room-temperature strip-guided “manufacturable” Silicon-on-Insulator (SOI)/GeSn integrated-photonics quantum-gyroscope chip operating at 1550 nm is proposed and analysed. We demonstrate how the entangled photons generated in Si Spontaneous Four Wave Mixing (SFWM) can be used to improve the resolution of a Sagnac interferometric gyroscope. We propose different integrated architectures based on degenerate and non-degenerate SFWM. The chip comprises several beam splitters, two SFWM entangled photon sources, a pump filter, integrated Mach–Zehnder interferometric gyro, and an array of waveguide coupled GeSn/Ge/Si single-photon avalanche detectors. The laser pumped SWFM sources generate the signal-idler pairs, which, in turn, are used to measure the two-photon, four-photon, and higher order coincidences, resulting in an increasing of the gyro resolution by a factor of two and four, with respect to the classical approach. Full article
Show Figures

Figure 1

12 pages, 4139 KiB  
Article
A Fast and Efficient Measurement System for Nuclear Spin Relaxation Times in Atomic Vapors
by Ting Huang, Cunxiao Miao, Shuangai Wan, Xiaoqian Tian and Rui Li
Sensors 2019, 19(22), 4863; https://doi.org/10.3390/s19224863 - 8 Nov 2019
Cited by 4 | Viewed by 3347
Abstract
With the rapid progress of cutting-edge research such as quantum measurement technology, nuclear magnetic resonance (NMR) gyroscopes represent a major development direction of high-precision micro-miniature gyroscopes, which have significant advantages such as high precision, small size, and low power consumption. It is meaningful [...] Read more.
With the rapid progress of cutting-edge research such as quantum measurement technology, nuclear magnetic resonance (NMR) gyroscopes represent a major development direction of high-precision micro-miniature gyroscopes, which have significant advantages such as high precision, small size, and low power consumption. It is meaningful to measure the relaxation times of noble-gas atoms which are crucial indicators to accurately and quickly characterize the vapor cell performance as a core component of gyroscopes. In this paper, a test platform for relaxation time is built and an automatic relaxation time test system based on free induction decay (FID) and the π pulse method is designed to accelerate the relaxation time test. Firstly, the formula of the atomic dynamic process based on the Bloch equation was deduced, a GUI (Graphical User Interface) simulation based on the derived differential equation was conducted, and the moving process of the magnetic moment was visually described. Then, the virtual instrument was used to integrate multiple test instruments into an auto-test system, and LabVIEW programming was used for control to realize the automation of the test process on the test platform. Finally, the test results in different conditions were compared. The results show that the test system is stable and reliable with excellent man–machine interaction, and the measurement efficiency was increased by about 185%, providing an effective test scheme for vapor cell performance. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

Back to TopTop