Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = industrial-crop-waste valorisation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1027 KiB  
Article
DART-HRMS for the Rapid Assessment of Bioactive Compounds in Ultrasound-Processed Rapeseed Meal By-Product
by Anna Lante, Andrea Massaro, Carmela Zacometti, Dasha Mihaylova, Vesela Chalova, Albert Krastanov, Hristo Kalaydzhiev, Miluska Cisneros, Greta Morbin, Giorgia Riuzzi, Severino Segato and Alessandra Tata
Appl. Sci. 2025, 15(11), 5952; https://doi.org/10.3390/app15115952 - 25 May 2025
Viewed by 517
Abstract
In line with the recommended European policy for a zero-waste crop supply chain, a lab-pilot optimisation process to valorise the by-products of industrially produced rapeseed meal (RM) was performed. Three batches of RM were first processed into ethanol-wash solutes (EWS) and then optimised [...] Read more.
In line with the recommended European policy for a zero-waste crop supply chain, a lab-pilot optimisation process to valorise the by-products of industrially produced rapeseed meal (RM) was performed. Three batches of RM were first processed into ethanol-wash solutes (EWS) and then optimised (OEWS) by an ultrasound-assisted (UA) treatment. After direct analysis in real time–high resolution mass spectrometry (DART-HRMS) analysis, data were processed applying a partial least square–discriminant analysis (PLS-DA), which retrieved the 15 most discriminative ions able to characterise the biochemical changes during the ethanol-washing and UA optimisation process. The metabolomic fingerprinting of EWS and OEWS generated an accurate and well-defined 3D spatial clusterisation based on a restricted pool of informative bioactive compounds. A significantly higher relative abundance of sinapic, azelaic, and vernolic acids and a lower incidence of the oleic and palmitic fatty acids were detected in OEWS. DART-HRMS generated a vast amount of biochemical information in one single run, also demonstrating that its association with an untargeted multivariate statistical approach would be a valuable tool for revealing specific functional biomarkers. This would eventually enhance the circular and effective use of rapeseed residuals coming from this plant’s oilseed industry. Full article
Show Figures

Figure 1

15 pages, 5201 KiB  
Article
Valorisation of Tomato Waste as a Source of Cutin for Hydrophobic Surface Coatings to Protect Starch- and Gelatine-Blend Bioplastics
by Marta Mroczkowska, David Culliton, Kieran J. Germaine, Manasa Hegde, Edmond F. Tobin and Adriana Cunha Neves
Biomass 2024, 4(3), 990-1004; https://doi.org/10.3390/biomass4030055 - 2 Sep 2024
Cited by 1 | Viewed by 2575
Abstract
The valorisation of food by-products is an important step towards sustainability in food production. Tomatoes constitute one of the most processed crops in the world (160 million tonnes of tomatoes are processed every year), of which 4% is waste. This translates to 6.4 [...] Read more.
The valorisation of food by-products is an important step towards sustainability in food production. Tomatoes constitute one of the most processed crops in the world (160 million tonnes of tomatoes are processed every year), of which 4% is waste. This translates to 6.4 million tonnes of tomato skins and seeds. Currently, this waste is composted or is used in the production of low-value animal feed; higher value can be achieved if this waste stream is re-appropriated for more advanced purposes. Plant cuticle is a membrane structure found on leaves and fruit, including tomatoes, and is mainly composed of cutin. The main function of plant cuticle is to limit water loss from the internal tissue of the plant. Cutin, which can be recovered from the tomato skins by pH shift extraction, has hydrophobic (water repellent) properties and is therefore an ideal raw material for the development of a novel water-resistant coating. In this study, biomass-based bioplastics were developed. Unfortunately, although these bioplastics have good mechanical properties, their hydrophilic nature results in poor water barrier properties. To mitigate this, a very effective water-resistant coating was formulated using the cutin extracted from tomato peels. The water vapour permeability rates of the bioplastics improved by 74% and the percentage swelling of the bioplastic improved by 84% when treated with the cutin coating. With physicochemical properties that can compete with petroleum-based plastics, these bioplastics have the potential to address the growing market demand for sustainable alternatives for food packaging. Using ingredients generated from by-products of the food processing industries (circular economy), the development of these bioplastics also addresses the UN’s Sustainable Development Goal (SDG) 12, Sustainable Consumption and Production (SCP). Full article
(This article belongs to the Special Issue Biomass Materials: Synthesis, Functionalisation, and Applications)
Show Figures

Figure 1

20 pages, 1881 KiB  
Review
Reclaiming Agriceuticals from Sweetpotato (Ipomoea batatas [L.] Lam.) By-Products
by Tiange Liu, Qingtong Xie, Min Zhang, Jia Gu, Dejian Huang and Qinghe Cao
Foods 2024, 13(8), 1180; https://doi.org/10.3390/foods13081180 - 12 Apr 2024
Cited by 4 | Viewed by 2485
Abstract
Sweetpotato (SP, Ipomoea batatas [L.] Lam.) is a globally significant food crop known for its high nutritional and functional values. Although the contents and compositions of bioactive constituents vary among SP varieties, sweetpotato by-products (SPBs), including aerial parts, storage root peels, and wastes [...] Read more.
Sweetpotato (SP, Ipomoea batatas [L.] Lam.) is a globally significant food crop known for its high nutritional and functional values. Although the contents and compositions of bioactive constituents vary among SP varieties, sweetpotato by-products (SPBs), including aerial parts, storage root peels, and wastes generated from starch processing, are considered as excellent sources of polyphenols (e.g., chlorogenic acid, caffeoylquinic acid, and dicaffeoylquinic acid), lutein, functional carbohydrates (e.g., pectin, polysaccharides, and resin glycosides) or proteins (e.g., polyphenol oxidase, β-amylase, and sporamins). This review summarises the health benefits of these ingredients specifically derived from SPBs in vitro and/or in vivo, such as anti-obesity, anti-cancer, antioxidant, cardioprotective, and anti-diabetic, evidencing their potential to regenerate value-added bio-products in the fields of food and nutraceutical. Accordingly, conventional and novel technologies have been developed and sometimes combined for the pretreatment and extraction processes aimed at optimising the recovery efficiency of bioactive ingredients from SPBs while ensuring sustainability. However, so far, advanced extraction technologies have not been extensively applied for recovering bioactive compounds from SPBs except for SP leaves. Furthermore, the incorporation of reclaimed bioactive ingredients from SPBs into foods or other healthcare products remains limited. This review also briefly discusses current challenges faced by the SPB recycling industry while suggesting that more efforts should be made to facilitate the transition from scientific advances to commercialisation for reutilising and valorising SPBs. Full article
Show Figures

Figure 1

20 pages, 1528 KiB  
Systematic Review
Sustainable Waste Management in the Production of Medicinal and Aromatic Plants—A Systematic Review
by Sara Marcelino, Pedro Dinis Gaspar and Arminda Paço
Sustainability 2023, 15(18), 13333; https://doi.org/10.3390/su151813333 - 6 Sep 2023
Cited by 18 | Viewed by 4597
Abstract
Without a Sustainable Waste Management (SWM) system, the growing demand for Medicinal and Aromatic Plants (MAPs) can also lead to a considerable increase in the waste generated by the industry. Since MAP residues have a notable potential to be valorised, the implementation of [...] Read more.
Without a Sustainable Waste Management (SWM) system, the growing demand for Medicinal and Aromatic Plants (MAPs) can also lead to a considerable increase in the waste generated by the industry. Since MAP residues have a notable potential to be valorised, the implementation of Circular Economy (CE) solutions can play a central role in converting waste into economic opportunities, while fostering a sustainable planet. CE helps to mitigate environmental and social risks caused by the accumulation of biomass by turning waste into valuable products. A systematic review was conducted, aiming to identify potential applications for the valorisation of MAP residues under a sustainable approach. A total number of 47 studies were analysed, providing a novel compilation of possibilities for decision makers in the MAP industry to develop new products for crop management or new businesses in food, cosmetic, pharmaceutical, chemical, paper, or building industries. Researchers in this field have focused more on the industrial value of MAP residues than on the empirical assessment of environmental and economic benefits. Further investigation should be undertaken to present empirical applications and to develop a decision support system to assess the sustainable performance of valorisation options. Full article
(This article belongs to the Topic Innovation and Solution for Sustainable Agriculture)
Show Figures

Figure 1

22 pages, 2104 KiB  
Review
Critical Assessment of Hydrogen and Methane Production from 1G and 2G Sugarcane Processing Wastes Using One-Stage and Two-Stage Anaerobic Digestion
by Tirthankar Mukherjee, Eric Trably and Prasad Kaparaju
Energies 2023, 16(13), 4919; https://doi.org/10.3390/en16134919 - 24 Jun 2023
Cited by 11 | Viewed by 2266
Abstract
Sugarcane is a lignocellulosic crop which is used to produce sugar in sugarcane processing industries. Globally, sugarcane processing industries generate solid and liquid wastes amounting to more than 279 million tons per annum and by-products; namely, trash, bagasse, mill mud, and molasses. The [...] Read more.
Sugarcane is a lignocellulosic crop which is used to produce sugar in sugarcane processing industries. Globally, sugarcane processing industries generate solid and liquid wastes amounting to more than 279 million tons per annum and by-products; namely, trash, bagasse, mill mud, and molasses. The valorisation of waste and by-products has recently increased and is playing a significant role in achieving policies and goals associated with circular bioeconomy and sustainable development. For the valorisation of sugarcane processing industry waste and by-products, a number of technologies are well established and in use, while other innovative technologies are still ongoing through research and development with promising futures. These by-products obtained from sugarcane processing industries can be converted into biofuels like hydrogen and methane via anaerobic digestion. Molasses belongs to the first-generation (1G) waste, while trash, bagasse, and mill mud belong to second-generation (2G) waste. Various studies have been carried out in converting both first- and second-generation sugarcane processing industry wastes into renewable energy, exploiting anaerobic digestion (AD) and dark fermentation (DF). This review emphasises the various factors affecting the AD and DF of 1G and 2G sugarcane processing industry wastes. It also critically addresses the feasibility and challenges of operating a two-stage anaerobic digestion process for hydrogen and methane production from these wastes. Full article
(This article belongs to the Special Issue Biomass Conversion Technologies II)
Show Figures

Figure 1

15 pages, 1738 KiB  
Article
Biotransformation of Waste Bile Acids: A New Possible Sustainable Approach to Anti-Fungal Molecules for Crop Plant Bioprotection?
by Alessandro Grandini, Daniela Summa, Stefania Costa, Raissa Buzzi, Elena Tamburini, Gianni Sacchetti and Alessandra Guerrini
Int. J. Mol. Sci. 2022, 23(8), 4152; https://doi.org/10.3390/ijms23084152 - 8 Apr 2022
Cited by 6 | Viewed by 3267
Abstract
Phytopathogenic fungi are among the main causes of productivity losses in agriculture. To date, synthetic chemical pesticides, such as hydroxyanilides, anilinopyrimidines and azole derivatives, represent the main treatment tools for crop plant defence. However, the large and uncontrolled use of these substances has [...] Read more.
Phytopathogenic fungi are among the main causes of productivity losses in agriculture. To date, synthetic chemical pesticides, such as hydroxyanilides, anilinopyrimidines and azole derivatives, represent the main treatment tools for crop plant defence. However, the large and uncontrolled use of these substances has evidenced several side effects, namely the resistance to treatments, environmental damage and human health risks. The general trend is to replace chemicals with natural molecules in order to reduce these side effects. Moreover, the valorisation of agri-food industry by-products through biotransformation processes represents a sustainable alternative to chemical synthesis in several sectors. This research is aimed at comparing the anti-phytopathogenic activity of waste bovine and porcine bile with secosteroids obtained by biotransformation of bile acids with Rhodococcus strains. The ultimate goal is to apply these natural products on food crops affected by phytopathogenic fungi. Full article
Show Figures

Figure 1

12 pages, 4407 KiB  
Article
Selection of Autochthonous LAB Strains of Unripe Green Tomato towards the Production of Highly Nutritious Lacto-Fermented Ingredients
by Nelson Pereira, Carla Alegria, Cristina Aleixo, Paula Martins, Elsa M. Gonçalves and Marta Abreu
Foods 2021, 10(12), 2916; https://doi.org/10.3390/foods10122916 - 25 Nov 2021
Cited by 8 | Viewed by 3039
Abstract
Lactic fermentation of unripe green tomatoes as a tool to produce food ingredients is a viable alternative for adding value to industrial tomatoes unsuitable for processing and left in large quantities in the fields. Fermentation using starter cultures isolated from the fruit (plant-matrix [...] Read more.
Lactic fermentation of unripe green tomatoes as a tool to produce food ingredients is a viable alternative for adding value to industrial tomatoes unsuitable for processing and left in large quantities in the fields. Fermentation using starter cultures isolated from the fruit (plant-matrix adapted) can have advantages over allochthonous strains in obtaining fermented products with sensory acceptability and potentially probiotic characteristics. This paper details the characterisation of the unripe green tomato lactic microbiota to screen LAB strains for use as starter cultures in fermentation processes, along with LAB strains available from INIAV’s collection. Morphological, biochemical (API system), and genomic (16S rDNA gene sequencing) identification showed that the dominant LAB genera in unripe green tomato are Lactiplantibacillus, Leuconostoc, and Weissella. Among nine tested strains, autochthonous Lactiplantibacillus plantarum and allochthonous Weissella paramesenteroides showed tolerance to added solanine (200 ppm) and the best in vitro probiotic potential. The results indicate that the two LAB strains are promising candidates for manufacturing probiotic fermented foods from unripe green tomatoes. Full article
Show Figures

Figure 1

16 pages, 5797 KiB  
Article
Location of Biorefineries Based on Olive-Derived Biomass in Andalusia, Spain
by Diego Cardoza, Inmaculada Romero, Teresa Martínez, Encarnación Ruiz, Francisco J. Gallego, Juan Carlos López-Linares, Paloma Manzanares and Eulogio Castro
Energies 2021, 14(11), 3052; https://doi.org/10.3390/en14113052 - 25 May 2021
Cited by 10 | Viewed by 4060
Abstract
A biorefinery integrated process based on lignocellulosic feedstock is especially interesting in rural areas with a high density of agricultural and agro-industrial wastes, which is the case for olive crop areas and their associated industries. In the region of Andalusia, in the south [...] Read more.
A biorefinery integrated process based on lignocellulosic feedstock is especially interesting in rural areas with a high density of agricultural and agro-industrial wastes, which is the case for olive crop areas and their associated industries. In the region of Andalusia, in the south of Spain, the provinces of Jaén, Córdoba and Seville accumulate more than 70% of the olive wastes generated in Spain. Therefore, the valorisation of these wastes is a matter of interest from both an environmental and a social point of view. The olive biorefinery involves a multi-product process from different raw materials: olive leaves, exhausted olive pomace, olive stones and olive tree pruning residues. Biorefinery processes associated with these wastes would allow their valorisation to produce bioenergy and high value-added renewable products. In this work, using geographic information system tools, the biomass from olive crop fields, mills and olive pomace-extracting industries, where these wastes are generated, was determined and quantified in the study area. In addition, the vulnerability of the territory was evaluated through an environmental and territorial analysis that allowed for the determination of the reception capacity of the study area. Then, information layers corresponding to the availability of the four biomass wastes, and layers corresponding to the environmental fragility of the study area were overlapped and they resulted in an overall map. This made it possible to identify the best areas for the implementation of the biorefineries based on olive-derived biomass. Finally, as an example, three zones were selected for this purpose. These locations corresponded to low fragility areas with a high availability of biomass (more than 300,000 tons/year) in a 30 km radius, which would ensure the biomass supply. Full article
(This article belongs to the Special Issue Biorefinery Based on Waste Biomass)
Show Figures

Figure 1

Back to TopTop