Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = individual air quality index (IAQI)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 7803 KiB  
Article
Fine-Grained Individual Air Quality Index (IAQI) Prediction Based on Spatial-Temporal Causal Convolution Network: A Case Study of Shanghai
by Xiliang Liu, Junjie Zhao, Shaofu Lin, Jianqiang Li, Shaohua Wang, Yumin Zhang, Yuyao Gao and Jinchuan Chai
Atmosphere 2022, 13(6), 959; https://doi.org/10.3390/atmos13060959 - 13 Jun 2022
Cited by 6 | Viewed by 3346
Abstract
Accurate and fine-grained individual air quality index (IAQI) prediction is the basis of air quality index (AQI), which is of great significance for air quality control and human health. Traditional approaches, such as time series, recurrent neural network or graph convolutional network, cannot [...] Read more.
Accurate and fine-grained individual air quality index (IAQI) prediction is the basis of air quality index (AQI), which is of great significance for air quality control and human health. Traditional approaches, such as time series, recurrent neural network or graph convolutional network, cannot effectively integrate spatial-temporal and meteorological factors and manage the dynamic edge relationship among scattered monitoring stations. In this paper, a ST-CCN-IAQI model is proposed based on spatial-temporal causal convolution networks. Both the spatial effects of multi-source air pollutants and meteorological factors were considered via spatial attention mechanism. Time-dependent features in the causal convolution network were extracted by stacked dilated convolution and time attention. All the hyper-parameters in ST-CCN-IAQI were tuned by Bayesian optimization. Shanghai air monitoring station data were employed with a series of baselines (AR, MA, ARMA, ANN, SVR, GRU, LSTM and ST-GCN). Final results showed that: (1) For a single station, the RMSE and MAE values of ST-CCN-IAQI were 9.873 and 7.469, decreasing by 24.95% and 16.87% on average, respectively. R2 was 0.917, with an average 5.69% improvement; (2) For all nine stations, the mean RMSE and MAE of ST-CCN-IAQI were 9.849 and 7.527, respectively, and the R2 value was 0.906. (3) Shapley analysis showed PM10, humidity and NO2 were the most influencing factors in ST-CCN-IAQI. The Friedman test, under different resampling, further confirmed the advantage of ST-CCN-IAQI. The ST-CCN-IAQI provides a promising direction for fine-grained IAQI prediction. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

17 pages, 4419 KiB  
Article
Three-Year Variations in Criteria Atmospheric Pollutants and Their Relationship with Rainwater Chemistry in Karst Urban Region, Southwest China
by Jie Zeng, Xin Ge, Qixin Wu and Shitong Zhang
Atmosphere 2021, 12(8), 1073; https://doi.org/10.3390/atmos12081073 - 21 Aug 2021
Cited by 10 | Viewed by 2866
Abstract
Air pollutants have been investigated in many studies, but the variations of atmospheric pollutants and their relationship with rainwater chemistry are not well studied. In the present study, the criteria atmospheric pollutants in nine monitoring stations and rainwater chemistry were analyzed in karst [...] Read more.
Air pollutants have been investigated in many studies, but the variations of atmospheric pollutants and their relationship with rainwater chemistry are not well studied. In the present study, the criteria atmospheric pollutants in nine monitoring stations and rainwater chemistry were analyzed in karst Guiyang city, since the time when the Chinese Ambient Air Quality Standards (CAAQS, third revision) were published. Based on the three-year daily concentration dataset of SO2, NO2, CO, PM10 and PM2.5, although most of air pollutant concentrations were within the limit of CAAQS III-Grade II standard, the significant spatial variations and relatively heavy pollution were found in downtown Guiyang. Temporally, the average concentrations of almost all air pollutants (except for CO) decreased during three years at all stations. Ratios of PM2.5/PM10 in non- and episode days reflected the different contributions of fine and coarse particles on particulate matter in Guiyang, which was influenced by the potential meteorological factors and source variations. According to the individual air quality index (IAQI), the seasonal variations of air quality level were observed, that is, IAQI values of air pollutants were higher in winter (worst air quality) and lower in summer (best air quality) due to seasonal variations in emission sources. The unique IAQI variations were found during the Chinese Spring Festival. Air pollutant concentrations are also influenced by meteorological parameters, in particular, the rainfall amount. The air pollutants are well scoured by the rainfall process and can significantly affect rainwater chemistry, such as SO42−, NO3, Mg2+, and Ca2+, which further alters the acidification/alkalization trend of rainwater. The equivalent ratios of rainwater SO42−/NO3 and Mg2+/Ca2+ indicated the significant contribution of fixed emission sources (e.g., coal combustion) and carbonate weathering-influenced particulate matter on rainwater chemistry. These findings provide scientific support for air pollution management and rainwater chemistry-related environmental issues. Full article
(This article belongs to the Special Issue Outdoor Air Pollution and Human Health)
Show Figures

Figure 1

Back to TopTop