Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = improved sine-trend search

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 28675 KiB  
Article
Mine Surface Settlement Prediction Based on Optimized VMD and Multi-Model Combination
by Liyu Shen and Weicai Lv
Processes 2023, 11(12), 3309; https://doi.org/10.3390/pr11123309 - 28 Nov 2023
Cited by 4 | Viewed by 1882
Abstract
The accurate prediction of mining area surface deformation is essential to preventing large-scale coal mining-related surface collapse and ensure safety and daily life continuity. Monitoring subsidence in mining areas is challenged by environmental interference, causing data noise. This paper employs the Sparrow Search [...] Read more.
The accurate prediction of mining area surface deformation is essential to preventing large-scale coal mining-related surface collapse and ensure safety and daily life continuity. Monitoring subsidence in mining areas is challenged by environmental interference, causing data noise. This paper employs the Sparrow Search Algorithm, which integrates Sine Cosine and Cauchy mutation (SCSSA), to optimize variational mode decomposition (VMD) and combine multi-models for prediction. Firstly, SCSSA is employed to adaptively determine the parameters of VMD using envelope entropy as the fitness value. Subsequently, the VMD method optimized using SCSSA adaptively decomposes the original mining area subsidence data sequence into various sub-sequences. Then, SCSSA-VMD is applied to adaptively decompose the original mining subsidence data sequence into multiple sub-sequences. Meanwhile, using sample entropy, the sub-sequences are categorized into trend sequences and fluctuation sequences, and different models are employed to predict sub-sequences at different frequencies. Finally, the prediction results from different sub-sequences are integrated to obtain the final prediction of mining area subsidence. To validate the predictive performance of the established model, experiments are conducted using GNSS monitoring data from the 110801 working face of Banji Coal Mine in Bozhou. The results demonstrate the following: (1) The hybrid model enhanced the prediction accuracy and trends by decomposing the data and optimizing the parameters with VMD. It outperformed single models, reducing errors and improving predictive trends. (2) The hybrid model significantly improved the prediction accuracy for subsidence data at work surface monitoring stations. It is particularly effective at critical subsidence points, making it a valuable reference for safety in mining operations. Full article
Show Figures

Figure 1

26 pages, 2272 KiB  
Article
An Improved Harris Hawks Optimization Algorithm and Its Application in Grid Map Path Planning
by Lin Huang, Qiang Fu and Nan Tong
Biomimetics 2023, 8(5), 428; https://doi.org/10.3390/biomimetics8050428 - 15 Sep 2023
Cited by 10 | Viewed by 2795
Abstract
Aimed at the problems of the Harris Hawks Optimization (HHO) algorithm, including the non-origin symmetric interval update position out-of-bounds rate, low search efficiency, slow convergence speed, and low precision, an Improved Harris Hawks Optimization (IHHO) algorithm is proposed. In this algorithm, a circle [...] Read more.
Aimed at the problems of the Harris Hawks Optimization (HHO) algorithm, including the non-origin symmetric interval update position out-of-bounds rate, low search efficiency, slow convergence speed, and low precision, an Improved Harris Hawks Optimization (IHHO) algorithm is proposed. In this algorithm, a circle map was added to replace the pseudo-random initial population, and the population boundary number was reduced to improve the efficiency of the location update. By introducing a random-oriented strategy, the information exchange between populations was increased and the out-of-bounds position update was reduced. At the same time, the improved sine-trend search strategy was introduced to improve the search performance and reduce the out-of-bound rate. Then, a nonlinear jump strength combining escape energy and jump strength was proposed to improve the convergence accuracy of the algorithm. Finally, the simulation experiment was carried out on the test function and the path planning application of a 2D grid map. The results show that the Improved Harris Hawks Optimization algorithm is more competitive in solving accuracy, convergence speed, and non-origin symmetric interval search efficiency, and verifies the feasibility and effectiveness of the Improved Harris Hawks Optimization in the path planning of a grid map. Full article
(This article belongs to the Special Issue Nature-Inspired Computer Algorithms: 2nd Edition)
Show Figures

Figure 1

Back to TopTop