Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = improved M-ary phase position shift keying (MPPSK)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 489 KiB  
Article
M-ary Phase Position Shift Keying Demodulation Using Stacked Denoising Sparse Autoencoders
by Conghui Lu, Peng Chen, Hua Zhong and Mengyuan Wang
Electronics 2022, 11(8), 1233; https://doi.org/10.3390/electronics11081233 - 14 Apr 2022
Cited by 2 | Viewed by 1770
Abstract
A deep-learning based detector for M-ary phase position shift keying (MPPSK) systems is proposed in this paper. The major components of this detector include a special impact filter, a stacked denoising sparse autoencoder (DSAE), which was trained in unsupervised learning to extract features [...] Read more.
A deep-learning based detector for M-ary phase position shift keying (MPPSK) systems is proposed in this paper. The major components of this detector include a special impact filter, a stacked denoising sparse autoencoder (DSAE), which was trained in unsupervised learning to extract features from the modulation signals, and a softmax classifier. The features learned by the stacked DSAE were then used to train the softmax classifier to demodulate the received signals into M classes. The architecture presented herein was trained and tested on a simple dataset extended by adding Gaussian noise only. The results from the theoretical analysis and simulation show that the detection performance of the proposed scheme is superior to that of existing detectors. Full article
(This article belongs to the Special Issue Advanced Techniques for Radar Signal Processing)
Show Figures

Figure 1

17 pages, 2187 KiB  
Article
Anti-Multipath Performance Improvement of an M-ary Position Phase Shift Keying Modulation System
by Haiyuan Wang and Hongxian Tian
Sensors 2019, 19(8), 1938; https://doi.org/10.3390/s19081938 - 25 Apr 2019
Cited by 1 | Viewed by 3374
Abstract
Low-Power Wide-Area Network (LPWAN) is the technology that the Internet-of-Things (IoT) uses in long-distance, wide-coverage scenarios. As one of the ultra-narrowband (UNB) modulation techniques, M-ary position phase shift keying (MPPSK) modulation can provide high coverage and high reliability for LPWAN. This paper proposes [...] Read more.
Low-Power Wide-Area Network (LPWAN) is the technology that the Internet-of-Things (IoT) uses in long-distance, wide-coverage scenarios. As one of the ultra-narrowband (UNB) modulation techniques, M-ary position phase shift keying (MPPSK) modulation can provide high coverage and high reliability for LPWAN. This paper proposes a multipath separation method based on MPPSK modulation, which aims to eliminate the influence of multipath on the main path without increasing the spectrum overhead and system complexity. Specifically, the modulation parameter of the system is adjusted according to the delay value, so that the phase jump of the multipath signal falls outside the phase jump of the main path symbol to achieve separation of the multipath from the main path. Moreover, a normalized symbol joint decision method is proposed in order to reduce the introduced noise while using multipath information for decisions. The simulation results indicate that the multipath separation conditions given in this paper can meet the requirements of multipath separation of MPPSK signals. Compared with the existing mainstream decision scheme, the normalized symbol joint decision improves the demodulation performance of the system. Full article
Show Figures

Figure 1

16 pages, 3060 KiB  
Article
Adaptive Waveform Design for MIMO Radar-Communication Transceiver
by Yu Yao, Junhui Zhao and Lenan Wu
Sensors 2018, 18(6), 1957; https://doi.org/10.3390/s18061957 - 16 Jun 2018
Cited by 14 | Viewed by 4593
Abstract
The system architecture for an adaptive multiple input multiple output (MIMO) radar-communication transceiver is proposed. A waveform design approach for communication data embedding into MIMO radar pulse using M-ary position phase shift keying (MPPSK) waveforms is introduced. A waveform optimization algorithm for the [...] Read more.
The system architecture for an adaptive multiple input multiple output (MIMO) radar-communication transceiver is proposed. A waveform design approach for communication data embedding into MIMO radar pulse using M-ary position phase shift keying (MPPSK) waveforms is introduced. A waveform optimization algorithm for the adaptive system is presented. The algorithm aims to improve the target detection performance by maximizing the relative entropy (RE) between the distributions under existence and absence of the target, and minimizing the mutual information (MI) between the current received signals and the estimated signals in the next time instant. The proposed system adapts its MPPSK modulated inter-pulse duration to suit the time-varying environment. With subsequent iterations of the algorithm, simulation results show an improvement in target impulse response (TIR) estimation and target detection probability. Meanwhile, the system is able to transmit data of several Mbps with low symbol error rates. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

Back to TopTop