Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = implantable biomedical microsystems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
46 pages, 28715 KiB  
Review
Recent Advances on Hybrid Piezo-Triboelectric Bio-Nanogenerators: Materials, Architectures and Circuitry
by Massimo Mariello
Nanoenergy Adv. 2022, 2(1), 64-109; https://doi.org/10.3390/nanoenergyadv2010004 - 10 Feb 2022
Cited by 42 | Viewed by 7962
Abstract
Nanogenerators, based on piezoelectric or triboelectric materials, have emerged in the recent years as an attractive cost-effective technology for harvesting energy from renewable and clean energy sources, but also for human sensing and biomedical wearable/implantable applications. Advances in materials engineering have enlightened new [...] Read more.
Nanogenerators, based on piezoelectric or triboelectric materials, have emerged in the recent years as an attractive cost-effective technology for harvesting energy from renewable and clean energy sources, but also for human sensing and biomedical wearable/implantable applications. Advances in materials engineering have enlightened new opportunities for the creation and use of novel biocompatible soft materials as well as micro/nano-structured or chemically-functionalized interfaces. Hybridization is a key concept that can be used to enhance the performances of the single devices, by coupling more transducing mechanisms in a single-integrated micro-system. It has attracted plenty of research interest due to the promising effects of signal enhancement and simultaneous adaptability to different operating conditions. This review covers and classifies the main types of hybridization of piezo-triboelectric bio-nanogenerators and it also provides an overview of the most recent advances in terms of material synthesis, engineering applications, power-management circuits and technical issues for the development of reliable implantable devices. State-of-the-art applications in the fields of energy harvesting, in vitro/in vivo biomedical sensing, implantable bioelectronics are outlined and presented. The applicative perspectives and challenges are finally discussed, with the aim to suggest improvements in the design and implementation of next-generation hybrid bio-nanogenerators and biosensors. Full article
(This article belongs to the Special Issue Recent Advances in Nanogenerators)
Show Figures

Figure 1

11 pages, 7805 KiB  
Article
An Ultra-Low-Power Area-Efficient Non-Coherent Binary Phase-Shift Keying Demodulator for Implantable Biomedical Microsystems
by Milad Ghazi, Mohammad Hossein Maghami, Parviz Amiri and Sotoudeh Hamedi-Hagh
Electronics 2020, 9(7), 1123; https://doi.org/10.3390/electronics9071123 - 10 Jul 2020
Cited by 7 | Viewed by 4764
Abstract
A novel non-coherent, low-power, area-efficient binary phase-shift keying demodulator for wireless implantable biomedical microsystems is proposed. The received data and synchronized clock signal are detected using a delayed digitized format of the input signal. The proposed technique does not require any kind of [...] Read more.
A novel non-coherent, low-power, area-efficient binary phase-shift keying demodulator for wireless implantable biomedical microsystems is proposed. The received data and synchronized clock signal are detected using a delayed digitized format of the input signal. The proposed technique does not require any kind of oscillator circuit, and due to the synchronization of all circuit signals, the proposed demodulator can work in a wide range of biomedical data telemetry common frequencies in different process/temperature corners. The presented circuit has been designed and post-layout-simulated in a standard 0.18 μm CMOS technology and occupies 17 × 27 μm2 of active area. Post-layout simulation results indicate that with a 1.8 V power supply, power consumption of the designed circuit is 8.5 μW at a data rate of 20 Mbps. The presented demodulation scheme was also implemented on a proof-of-concept circuit board for verifying its functionality. Full article
(This article belongs to the Special Issue Wireless Power/Data Transfer, Energy Harvesting System Design)
Show Figures

Figure 1

11 pages, 9342 KiB  
Article
Technology for 3D System Integration for Flexible Wireless Biomedical Applications
by Wen-Cheng Kuo and Chih-Wei Huang
Micromachines 2018, 9(5), 213; https://doi.org/10.3390/mi9050213 - 2 May 2018
Cited by 2 | Viewed by 3136
Abstract
This paper presents a new 3D bottom-up packing technology for integrating a chip, an induction coil, and interconnections for flexible wireless biomedical applications. Parylene was used as a flexible substrate for the bottom-up embedding of the chip, insulation layer, interconnection, and inductors to [...] Read more.
This paper presents a new 3D bottom-up packing technology for integrating a chip, an induction coil, and interconnections for flexible wireless biomedical applications. Parylene was used as a flexible substrate for the bottom-up embedding of the chip, insulation layer, interconnection, and inductors to form a flexible wireless biomedical microsystem. The system can be implanted on or inside the human body. A 50-μm gold foil deposited through laser micromachining by using a picosecond laser was used as an inductor to yield a higher quality factor than that yielded by thickness-increasing methods such as the fold-and-bond method or thick-metal electroplating method at the operation frequency of 1 MHz. For system integration, parylene was used as a flexible substrate, and the contact pads and connections between the coil and chip were generated using gold deposition. The advantage of the proposed process can integrate the chip and coil vertically to generate a single biocompatible system in order to reduce required area. The proposed system entails the use of 3D integrated circuit packaging concepts to integrate the chip and coil. The results validated the feasibility of this technology. Full article
(This article belongs to the Special Issue Wafer Level Packaging of MEMS)
Show Figures

Figure 1

16 pages, 7832 KiB  
Article
Design and Performance Assessment of a Solid-State Microcooler for Thermal Neuromodulation
by José Fernandes, Estelle Vendramini, Ana M. Miranda, Cristiana Silva, Hugo Dinis, Veronique Coizet, Olivier David and Paulo Mateus Mendes
Micromachines 2018, 9(2), 47; https://doi.org/10.3390/mi9020047 - 27 Jan 2018
Cited by 11 | Viewed by 6657
Abstract
It is well known that neural activity can be modulated using a cooling device. The applications of this technique range from the treatment of medication-resistant cerebral diseases to brain functional mapping. Despite the potential benefits of such technique, its use has been limited [...] Read more.
It is well known that neural activity can be modulated using a cooling device. The applications of this technique range from the treatment of medication-resistant cerebral diseases to brain functional mapping. Despite the potential benefits of such technique, its use has been limited due to the lack of suitable thermal modulators. This paper presents the design and validation of a solid-state cooler that was able to modulate the neural activity of rodents without the use of large and unpractical water pipes. A miniaturized thermal control solution based exclusively on solid-state devices was designed, occupying only 5 mm × 5 mm × 3 mm, and featuring the potential for wireless power and communications. The cold side of the device was cooled to 26 °C, while the hot side was kept below 43 °C. This range of temperatures is compatible with brain cooling and efficient enough for achieving some control of neural activity. Full article
(This article belongs to the Special Issue Wireless Microdevices and Systems for Biomedical Applications)
Show Figures

Figure 1

Back to TopTop