Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = impedance tuner

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 7465 KiB  
Article
H-Shaped Slot Antenna with Harmonic Tuning Function and Integrated Power Amplifier
by Yuto Narita, Koichi Nozawa, Noriyuki Tanba, Shinji Hara and Hiroshi Hirayama
Energies 2023, 16(5), 2128; https://doi.org/10.3390/en16052128 - 22 Feb 2023
Cited by 1 | Viewed by 2209
Abstract
This study proposes a patch antenna with an H-shaped slot with direct matching and harmonic tuning (rejection) functions for microwave power transfer. This antenna enables an integrated active antenna in which the power amplifier and antenna are directly connected without using a matching [...] Read more.
This study proposes a patch antenna with an H-shaped slot with direct matching and harmonic tuning (rejection) functions for microwave power transfer. This antenna enables an integrated active antenna in which the power amplifier and antenna are directly connected without using a matching circuit for the fundamental frequency and harmonic rejection filter to improve the efficiency of the amplifier. The integrated design also reduces the total size of the amplifier and antenna, allowing for a higher-density array antenna. Characteristic mode analysis was performed to explain the working principle of the harmonic rejection function. The designed antenna at 5.8 GHz was fabricated to study its harmonic tuning function. The magnitude of the reflection coefficient of the proposed antenna was at a fundamental frequency of −40.4 dB for an amplification device with an optimum load impedance of 100 Ohm. At the second harmonic frequency, the magnitude and phase of the reflection coefficient at the second harmonic frequency were −0.79 dB and −177.6°, respectively; at the third harmonic frequency, they were −0.92 dB and −179.5°, respectively. Finally, the designed antenna was integrated into an amplifier circuit to verify that it achieved similar drain efficiency as when using the impedance tuner. It was confirmed that the harmonic rejection function of the proposed antenna increases the drain efficiency of the integrated power amplifier by 5.5%. The measurements revealed that this antenna is suitable for use in microwave power transfer because of its fundamental matching and harmonic-processing capabilities. Full article
Show Figures

Figure 1

12 pages, 4055 KiB  
Communication
High-Tc Superconducting Josephson Junction Harmonic Mixers with Stub Tuners on Integrated Bowtie Antennas
by Mei Yu, Chun Li, Xiang Gao, Zhenguo Wang, Tu-Lu Liang, Jin Shi, Jian-Xin Shi and Weiwei Xu
Appl. Sci. 2022, 12(24), 12813; https://doi.org/10.3390/app122412813 - 13 Dec 2022
Cited by 2 | Viewed by 1971
Abstract
Ordinary mixers can hardly meet the requirements in terahertz (THz) communications due to the low-power and expensive THz sources. Sensitive harmonic mixers have been widely studied to avoid this problem, owing to the fact that the higher the number of harmonics, the lower [...] Read more.
Ordinary mixers can hardly meet the requirements in terahertz (THz) communications due to the low-power and expensive THz sources. Sensitive harmonic mixers have been widely studied to avoid this problem, owing to the fact that the higher the number of harmonics, the lower the local oscillator (LO) frequency, and the lower the cost. High-Tc superconducting (HTS) Josephson junction (JJ) mixers are performing candidates for THz receiver frontends because of the advantages of excellent sensitivity, wide bandwidth, high harmonic number and low LO power requirement. However, the normal-state resistance of HTS JJ is so low that traditional antennas are difficult to match it. In other words, it is quite a challenge to match the input impedance to a low input impedance for traditional antennas, especially for antennas fed by coplanar striplines (CPSs). In this work, based on the structure of bowtie, two types of stub tuners were integrated to decrease the impedance of the bowtie antenna so as to improve the coupling efficiency between the traditional bowtie antenna and the JJ. Furthermore, HTS YBa2Cu3O7-δ (YBCO) JJ harmonic mixers coupled with the proposed structures and fed by CPSs are fabricated and measured. The measurements show that the JJ mixer coupled with a pair of open-end stubs of the bowtie antenna achieves up to 88 harmonics, with a conversion efficiency of −69.6 dB. In contrast, the JJ mixer coupled with a pair of lumped-element stubs of the bowtie antenna only attains to 30 harmonics, with a conversion efficiency of −73.4 dB. Additional numerical simulations indicate that the coupling efficiency is enhanced when the complex impedance of the antenna is explicitly considered. Compared with other coupled traditional antennas, the JJ mixer with bowtie antenna has the largest harmonic number. This work paves the way for the future application of low-frequency and low-cost LO for THz communications. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

9 pages, 5032 KiB  
Article
A Programmable Impedance Tuner with a High Resolution Using a 0.18-um CMOS SOI Process for Improved Linearity
by Younghwan Bae, Heesauk Jhon and Junghyun Kim
Electronics 2020, 9(1), 7; https://doi.org/10.3390/electronics9010007 - 19 Dec 2019
Cited by 4 | Viewed by 4381
Abstract
In this paper, a novel coupler/reflection-type programmable electronic impedance tuner combined with switches that were fabricated by a 0.18-um complementary metal–oxide–semiconductor (CMOS) silicon-on-insulator (SOI) process is proposed for replacement of the conventional mechanical tuner in power amplifier (PA) load-pull test. By employing the [...] Read more.
In this paper, a novel coupler/reflection-type programmable electronic impedance tuner combined with switches that were fabricated by a 0.18-um complementary metal–oxide–semiconductor (CMOS) silicon-on-insulator (SOI) process is proposed for replacement of the conventional mechanical tuner in power amplifier (PA) load-pull test. By employing the multi-stacked field-effect transistors (FETs) as a single-branch switch, the proposed tuner has the advantage of precise impedance variation with systematic and magnitude and phase adjustment. Additionally, it led to high standing wave ratio (SWR) coverage and a good impedance resolution with a high power handling capability. Furthermore, the double-branch based on multi-stacked FET was applied to switches for additional enhancement of the intermodulation distortion (IMD) performance through the mitigated drain-source voltage of the single-FET. Drawing upon the measurement results, we demonstrated that SWR changed from 2 to 6 sequentially with a 12–15° phase angle step over a mid/high-band range of a 1.5–2.1 GHz band for 3G/4G handset application. In addition, the PA load-pull measurement results obtained using the proposed tuners verified their practicality and competitive performance with mechanical tuners. Finally, the measured linearity using the double-branch switch demonstrated the good IMD3 performance of −78 dBc, and this result is noteworthy when compared with conventional electronic impedance tuners. Full article
(This article belongs to the Special Issue New CMOS Devices and Their Applications)
Show Figures

Figure 1

11 pages, 2666 KiB  
Article
Testing and Validation of Adaptive Impedance Matching System for Broadband Antenna
by Byul Hur, William R. Eisenstadt and Kathleen L. Melde
Electronics 2019, 8(9), 1055; https://doi.org/10.3390/electronics8091055 - 19 Sep 2019
Cited by 7 | Viewed by 5431
Abstract
Broad RF impedance matching is challenging; however, the need for broadband matching is found frequently in modern RF and wireless systems with multiple wireless standards. Moreover, in 5G technology, multiple frequency bands are used, and these systems typically employ a broadband antenna or [...] Read more.
Broad RF impedance matching is challenging; however, the need for broadband matching is found frequently in modern RF and wireless systems with multiple wireless standards. Moreover, in 5G technology, multiple frequency bands are used, and these systems typically employ a broadband antenna or multiple antennas. Antenna impedances vary from design targets for many reasons including manufacturing process variations or antenna environment changes. An adaptive impedance matching system (AIMS) for testing and validation is introduced, and its implementation is shown in this paper. The AIMS can control impedance matching tuner settings to provide an arbitrary impedance frequency-varying load that meets user-defined conditions. This AIMS provides a testing and validation system for broadband antennas that can be characterized by various settings of the impedance matching tuner. As a device under test (DUT), a three-stub reconfigurable filter was used as the impedance matching tuner on a RT/Duroid 6010 RF board. It was integrated with a control circuit board. This AIMS implementation also included an antenna impedance tuner that can vary the distance between the antenna and the ground plane. This model represents practical antenna impedance variations. The AIMS controls a network analyzer and the impendence matching tuner. The adaptive control program on a PC was developed to perform an effective two-pass tuning strategy. This article presents the successful automated tuned results and their numerical evaluations of three cases that were generated by the antenna impedance tuner. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

9 pages, 2196 KiB  
Article
Planar Inverted-F Antenna (PIFA) Using Microfluidic Impedance Tuner
by Minjae Lee and Sungjoon Lim
Sensors 2018, 18(10), 3176; https://doi.org/10.3390/s18103176 - 20 Sep 2018
Cited by 12 | Viewed by 6328
Abstract
This paper proposes a microfluidic impedance tuner that is applied to a planar inverted-F antenna (PIFA). The proposed microfluidic impedance tuner is designed while using a simple double-stub and the impedance is changed by tuning the stub length. In this work, the stub [...] Read more.
This paper proposes a microfluidic impedance tuner that is applied to a planar inverted-F antenna (PIFA). The proposed microfluidic impedance tuner is designed while using a simple double-stub and the impedance is changed by tuning the stub length. In this work, the stub length can be tuned by injecting a liquid metal alloy to the microfluidic channels. Initially, the PIFA operates at 900 MHz with impedance matching of 50 Ω. The impedance is mismatched when a hand is placed close to the antenna. The mismatched impedance is matched to 50 Ω by injecting the liquid metal alloy. The antenna is fabricated on the FR-4 substrate, and the impedance tuner is fabricated on polydimethylsiloxane (PDMS). In order to inject the liquid metal alloy, a piezoelectric micropump and microprocessor are used in the measurement. At 900 MHz, the return loss is successfully tuned from 4.69 dB to 18.4 dB when a hand is placed 1 mm above the antenna. Full article
(This article belongs to the Special Issue Microfluidic Sensors 2018)
Show Figures

Figure 1

Back to TopTop