Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = immunoglobulin superfamily containing leucine-rich repeat

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 7463 KiB  
Article
Immunoglobulin Superfamily Containing Leucine-Rich Repeat (ISLR) Serves as a Redox Sensor That Modulates Antioxidant Capacity by Suppressing Pyruvate Kinase Isozyme M2 Activity
by Tongtong Wang, Meijing Chen, Yang Su, Yuying Zhang, Chang Liu, Miaomiao Lan, Lei Li, Fan Liu, Na Li, Yingying Yu, Lei Xiong, Kun Wang, Jin Liu, Qing Xu, Yue Hu, Yuxin Jia, Yuxin Cao, Jingwen Pan and Qingyong Meng
Cells 2024, 13(10), 838; https://doi.org/10.3390/cells13100838 - 14 May 2024
Viewed by 1728
Abstract
Cells defend against oxidative stress by enhancing antioxidant capacity, including stress-activated metabolic alterations, but the underlying intracellular signaling mechanisms remain unclear. This paper reports that immunoglobulin superfamily containing leucine-rich repeat (ISLR) functions as a redox sensor that responds to reactive oxygen species (ROS) [...] Read more.
Cells defend against oxidative stress by enhancing antioxidant capacity, including stress-activated metabolic alterations, but the underlying intracellular signaling mechanisms remain unclear. This paper reports that immunoglobulin superfamily containing leucine-rich repeat (ISLR) functions as a redox sensor that responds to reactive oxygen species (ROS) stimulation and modulates the antioxidant capacity by suppressing pyruvate kinase isozyme M2 (PKM2) activity. Following oxidative stress, ISLR perceives ROS stimulation through its cysteine residue 19, and rapidly degrades in the autophagy–lysosome pathway. The downregulated ISLR enhances the antioxidant capacity by promoting the tetramerization of PKM2, and then enhancing the pyruvate kinase activity, PKM2-mediated glycolysis is crucial to the ISLR-mediated antioxidant capacity. In addition, our results demonstrated that, in triple-negative breast cancer, cisplatin treatment reduced the level of ISLR, and PKM2 inhibition sensitizes tumors to cisplatin by enhancing ROS production; and argued that PKM2 inhibition can synergize with cisplatin to limit tumor growth. Our results demonstrate a molecular mechanism by which cells respond to oxidative stress and modulate the redox balance. Full article
Show Figures

Figure 1

8 pages, 962 KiB  
Article
Analysis of the Roles of the ISLR2 Gene in Regulating the Toxicity of Zearalenone Exposure in Porcine Intestinal Epithelial Cells
by Zhenbin Bi, Xuezhu Gu, Yeyi Xiao, Yajing Zhou, Wenbin Bao, Shenglong Wu and Haifei Wang
Toxins 2022, 14(9), 639; https://doi.org/10.3390/toxins14090639 - 16 Sep 2022
Cited by 7 | Viewed by 2560
Abstract
Zearalenone (ZEN) is one of the mycotoxins that pose high risks for human and animal health, as well as food safety. However, the regulators involved in ZEN cellular toxicity remain largely unknown. Herein, we showed that cell viability of porcine intestinal epithelial cells [...] Read more.
Zearalenone (ZEN) is one of the mycotoxins that pose high risks for human and animal health, as well as food safety. However, the regulators involved in ZEN cellular toxicity remain largely unknown. Herein, we showed that cell viability of porcine intestinal epithelial cells (IPEC-J2) tended to decrease with increasing doses of ZEN by the cell counting kit-8 assay. Expression of the ISLR2 (immunoglobulin superfamily containing leucine-rich repeat 2) gene in IPEC-J2 cells was significantly downregulated upon ZEN exposure. Furthermore, we found the dose–effect of ZEN on ISLR2 expression. We then overexpressed the ISLR2 gene and observed that overexpression of ISLR2 obviously reduced the effects of ZEN on cell viability, apoptosis rate and oxidative stress level. In addition, ISLR2 overexpression significantly decreased the expression of TNF-α and IFN-α induced by ZEN. Our findings revealed the effects of ZEN on the ISLR2 gene expression and indicated the ISLR2 gene as a novel regulator of ZEN-induced cytotoxicity, which provides potential molecular targets against ZEN toxicity. Full article
Show Figures

Figure 1

17 pages, 4828 KiB  
Article
Immunoglobulin Superfamily Containing Leucine-Rich Repeat (Islr) Participates in IL-6-Mediated Crosstalk between Muscle and Brown Adipose Tissue to Regulate Energy Homeostasis
by Chang Liu, Jin Liu, Tongtong Wang, Yang Su, Lei Li, Miaomiao Lan, Yingying Yu, Fan Liu, Lei Xiong, Kun Wang, Meijing Chen, Na Li, Qing Xu, Yue Hu, Yuxin Jia and Qingyong Meng
Int. J. Mol. Sci. 2022, 23(17), 10008; https://doi.org/10.3390/ijms231710008 - 2 Sep 2022
Cited by 5 | Viewed by 2628
Abstract
Brown adipose tissue (BAT) is functionally linked to skeletal muscle because both tissues originate from a common progenitor cell, but the precise mechanism controlling muscle-to-brown-fat communication is insufficiently understood. This report demonstrates that the immunoglobulin superfamily containing leucine-rich repeat (Islr), a marker of [...] Read more.
Brown adipose tissue (BAT) is functionally linked to skeletal muscle because both tissues originate from a common progenitor cell, but the precise mechanism controlling muscle-to-brown-fat communication is insufficiently understood. This report demonstrates that the immunoglobulin superfamily containing leucine-rich repeat (Islr), a marker of mesenchymal stromal/stem cells, is critical for the control of BAT mitochondrial function and whole-body energy homeostasis. The mice loss of Islr in BAT after cardiotoxin injury resulted in improved mitochondrial function, increased energy expenditure, and enhanced thermogenesis. Importantly, it was found that interleukin-6 (IL-6), as a myokine, participates in this process. Mechanistically, Islr interacts with NADH: Ubiquinone Oxidoreductase Core Subunit S2 (Ndufs2) to regulate IL-6 signaling; consequently, Islr functions as a brake that prevents IL-6 from promoting BAT activity. Together, these findings reveal a previously unrecognized mechanism for muscle-BAT cross talk driven by Islr, Ndufs2, and IL-6 to regulate energy homeostasis, which may be used as a potential therapeutic target in obesity. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

13 pages, 8039 KiB  
Review
Good and Bad Stroma in Pancreatic Cancer: Relevance of Functional States of Cancer-Associated Fibroblasts
by Ryota Ando, Akihiro Sakai, Tadashi Iida, Kunio Kataoka, Yasuyuki Mizutani and Atsushi Enomoto
Cancers 2022, 14(14), 3315; https://doi.org/10.3390/cancers14143315 - 7 Jul 2022
Cited by 20 | Viewed by 4548
Abstract
A well-known feature of human pancreatic ductal adenocarcinoma (PDAC) is the extensive proliferation of cancer-associated fibroblasts (CAFs) and highly fibrotic stroma. Recent evidence, based mainly on single-cell analyses, has identified various subsets of CAFs in PDAC mouse models. However, we do not know [...] Read more.
A well-known feature of human pancreatic ductal adenocarcinoma (PDAC) is the extensive proliferation of cancer-associated fibroblasts (CAFs) and highly fibrotic stroma. Recent evidence, based mainly on single-cell analyses, has identified various subsets of CAFs in PDAC mouse models. However, we do not know how these CAF subsets are involved in the progression and drug resistance of human PDAC. Additionally, it remains unclear whether these diverse CAFs have distinct origins and are indicators of genuinely distinct CAF lineages or reflect different states of the same CAFs depending on the tumor microenvironment. Interestingly, recent preclinical studies have started to characterize the nature of cancer-restraining CAFs and have identified their markers Meflin and collagen type I alpha 1. These studies have led to the development of strategies to induce changes in CAF phenotypes using chemical reagents or recombinant viruses, and some of them have been tested in clinical studies. These strategies have the unique potential to convert the so-called bad stroma to good stroma and may also have therapeutic implications for non-cancer diseases such as fibrotic diseases. Together with recently developed sophisticated strategies that specifically target distinct CAF subsets via adoptive cell transfer therapy, vaccination, and antibody–drug conjugates, any future findings arising from these clinical efforts may expand our understanding of the significance of CAF diversity in human PDAC. Full article
(This article belongs to the Special Issue Tumor Microenvironment and Pancreatic Cancer)
Show Figures

Figure 1

Back to TopTop