Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = immunodeficient rabbits

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2128 KB  
Article
Heterologous Immunization with Improved HIV-1 Subtype C Vaccines Elicit Autologous Tier 2 Neutralizing Antibodies with Rapid Viral Replication Control After SHIV Challenge
by Gerald K. Chege, Rosamund E. Chapman, Alana T. Keyser, Craig H. Adams, Kealan Benn, Michiel T. van Diepen, Nicola Douglass, Bronwen Lambson, Tandile Hermanus, Penny L. Moore and Anna-Lise Williamson
Viruses 2025, 17(2), 277; https://doi.org/10.3390/v17020277 - 17 Feb 2025
Viewed by 1489
Abstract
We previously reported on HIV vaccines that elicited autologous Tier 2 neutralizing antibodies (nAbs) in rabbits. In the current study, we sought to establish a proof of concept that HIV vaccines using identical designs elicit Tier 2 nAbs in arhesus macaque (RM) model. [...] Read more.
We previously reported on HIV vaccines that elicited autologous Tier 2 neutralizing antibodies (nAbs) in rabbits. In the current study, we sought to establish a proof of concept that HIV vaccines using identical designs elicit Tier 2 nAbs in arhesus macaque (RM) model. DNA and MVA vaccines expressing SIV Gag and HIV-1 Env antigens were constructed, and in vitro expression was confirmed. A soluble envelope protein (gp140 Env) was expressed from a stable HEK293 cell line and purified using lectin affinity and size exclusion chromatography. The expression and secretion of SIV Gag and HIV-1 Env by the DNA and MVA vaccines was verified in vitro. Five RMs were inoculated with two DNA, followed by two MVA, and finally with two gp140 Env vaccines at weeks 0, 4, 8, 12, 20 and 28. Vaccine-induced T cell immunity was measured by IFN-γ ELISpot while nAbs were evaluated against MW965 (Tier 1A), 6644 (Tier 1B), autologous ZM109.5A and a closely-related ZM109.B4 (Tier 2) pseudovirions. Vaccinated RMs were challenged intrarectally with simian-human immunodeficiency virus (SHIV), four weeks after the final vaccination, as was an unvaccinated control group (n = 4). Following vaccination, all the animals developed moderate IFN-γ ELISpot responses after the DNA vaccinations which were boosted by the MVA vaccine. After the gp140 Env boost, all animals developed nAbs with peak median titres at 762 (MW965) and 263 (ZM109.5A). The vaccinated animals became infected after a similar number of challenges to the unvaccinated controls, and the resultant number of viral copies in the blood and the lymphoid tissues were similar. However, the duration of detectable viraemia in the vaccinated animals (median: 2 weeks) was shorter than the controls (median: 8.5 weeks). These data show that the vaccines elicited robust cellular and functional humoral immune responses that resulted in a quicker control of viraemia. Full article
Show Figures

Figure 1

11 pages, 2093 KB  
Article
Antisera-Neutralizing Capacity of a Highly Evolved Type 2 Vaccine-Derived Poliovirus from an Immunodeficient Patient
by Yanan Wu, Runfang Zhang, Guangbo Yuan, Lingyu He, Xiaohu Dai, Hongyun Chuan, Mingqing Wang, Jing Liu, Lilan Xu, Guoyang Liao, Weidong Li and Jian Zhou
Viruses 2024, 16(11), 1761; https://doi.org/10.3390/v16111761 - 12 Nov 2024
Viewed by 1917
Abstract
Background: The serotype 2 oral poliovirus vaccine (OPV2) can revert to regain wild-type neurovirulence and spread, causing the emergence of vaccine-derived poliovirus (VDPV2) and immunodeficiency-related vaccine-derived polioviruses (iVDPVs). In the United States, testing carried out by the CDC of type II iVDPV (iVDPV2) [...] Read more.
Background: The serotype 2 oral poliovirus vaccine (OPV2) can revert to regain wild-type neurovirulence and spread, causing the emergence of vaccine-derived poliovirus (VDPV2) and immunodeficiency-related vaccine-derived polioviruses (iVDPVs). In the United States, testing carried out by the CDC of type II iVDPV (iVDPV2) with human immune serum from the vaccine has shown that the presence of the virus poses a threat to eradication efforts. Methods: We analyzed the major neutralization sites of VP1, VP2, and VP3 of the iVDPV using bioinformatics techniques and homology modeling (SWISS-MODEL). The three amino acid residues 679, 680, and 141 of the P1 region changed, which had an impact on the spatial conformation of the viral-neutralizing site. We tested polio-vaccinated human sera and rabbit anti-Sabin II polyantibodies against a panel of iVDPV pseudoviruses. Results: The results demonstrated that the serum’s capacity to neutralize mutant pseudoviruses diminished when amino acid substitutions were introduced into the P1 encapsidated protein, particularly when 141 and 679 were mutated together. This study emphasizes the significance of continually monitoring individuals who are known to be immunocompromised and maintaining high vaccination rates in OPV-using communities. Full article
(This article belongs to the Special Issue Antibody Cross-Reactivity in Virus Infection)
Show Figures

Figure 1

20 pages, 746 KB  
Review
Emergence of Nanotechnology to Fight HIV Sexual Transmission: The Trip of G2-S16 Polyanionic Carbosilane Dendrimer to Possible Pre-Clinical Trials
by Ignacio Relaño-Rodríguez and Maria Ángeles Muñoz-Fernández
Int. J. Mol. Sci. 2020, 21(24), 9403; https://doi.org/10.3390/ijms21249403 - 10 Dec 2020
Cited by 15 | Viewed by 3831
Abstract
Development of new, safe, and effective microbicides to prevent human immunodeficiency virus HIV sexual transmission is needed. Unfortunately, most microbicides proved ineffective to prevent the risk of HIV-infection in clinical trials. We are working with G2-S16 polyanionic carbosilane dendrimer (PCD) as a new [...] Read more.
Development of new, safe, and effective microbicides to prevent human immunodeficiency virus HIV sexual transmission is needed. Unfortunately, most microbicides proved ineffective to prevent the risk of HIV-infection in clinical trials. We are working with G2-S16 polyanionic carbosilane dendrimer (PCD) as a new possible vaginal topical microbicide, based on its short reaction times, wide availability, high reproducibility, and quantitative yields of reaction. G2-S16 PCD exerts anti-HIV activity at an early stage of viral replication, by blocking gp120/CD4/CCR5 interaction, and providing a barrier against infection for long periods of time. G2-S16 PCD was stable at different pH values, as well as in the presence of seminal fluids. It maintained the anti-HIV activity against R5/X4 HIV over time, did not generate any type of drug resistance, and retained the anti-HIV effect when exposed to semen-enhanced viral infection. Importantly, G2-S16 PCD did not modify vaginal microbiota neither in vitro or in vivo. Histopathological examination did not show vaginal irritation, inflammation, lesions, or damage in the vaginal mucosa, after administration of G2-S16 PCD at different concentrations and times in female mice and rabbit animal models. Based on these promising data, G2-S16 PCD could become a good, safe, and readily available candidate to use as a topical vaginal microbicide against HIV. Full article
(This article belongs to the Special Issue Human Immunodeficiency Virus (HIV))
Show Figures

Figure 1

15 pages, 1094 KB  
Review
Immunodeficient Rabbit Models: History, Current Status and Future Perspectives
by Jun Song, Brooke Pallas, Dongshan Yang, Jifeng Zhang, Yash Agarwal, Y. Eugene Chen, Moses Bility and Jie Xu
Appl. Sci. 2020, 10(20), 7369; https://doi.org/10.3390/app10207369 - 21 Oct 2020
Cited by 2 | Viewed by 9363
Abstract
Production of immunodeficient (ID) models in non-murine animal species had been extremely challenging until the advent of gene-editing tools: first zinc finger nuclease (ZFN), then transcription activator-like effector nuclease (TALEN), and most recently clustered regularly interspaced short palindromic repeats-associated protein 9 (CRISPR)/Cas9. We [...] Read more.
Production of immunodeficient (ID) models in non-murine animal species had been extremely challenging until the advent of gene-editing tools: first zinc finger nuclease (ZFN), then transcription activator-like effector nuclease (TALEN), and most recently clustered regularly interspaced short palindromic repeats-associated protein 9 (CRISPR)/Cas9. We and others used those gene-editing tools to develop ID rabbits carrying a loss of function mutation in essential immune genes, such as forkhead box protein N1 (FOXN1), recombination activating gene 1/2 (RAG1/2), and interleukin 2 receptor subunit gamma (IL2RG). Like their mouse counterparts, ID rabbits have profound defects in their immune system and are prone to bacterial and pneumocystis infections without prophylactic antibiotics. In addition to their use as preclinical models for primary immunodeficient diseases, ID rabbits are expected to contribute significantly to regenerative medicine and cancer research, where they serve as recipients for allo- and xeno-grafts, with notable advantages over mouse models, including a longer lifespan and a much larger body size. Here we provide a concise review of the history and current status of the development of ID rabbits, as well as future perspectives of this new member in the animal model family. Full article
(This article belongs to the Special Issue Rabbit Models for Translational Medicine)
Show Figures

Figure 1

19 pages, 679 KB  
Review
Animal Models for Gammaherpesvirus Infections: Recent Development in the Analysis of Virus-Induced Pathogenesis
by Shigeyoshi Fujiwara and Hiroyuki Nakamura
Pathogens 2020, 9(2), 116; https://doi.org/10.3390/pathogens9020116 - 12 Feb 2020
Cited by 33 | Viewed by 6770
Abstract
Epstein–Barr virus (EBV) is involved in the pathogenesis of various lymphomas and carcinomas, whereas Kaposi’s sarcoma-associated herpesvirus (KSHV) participates in the pathogenesis of endothelial sarcoma and lymphomas. EBV and KSHV are responsible for 120,000 and 44,000 annual new cases of cancer, respectively. Despite [...] Read more.
Epstein–Barr virus (EBV) is involved in the pathogenesis of various lymphomas and carcinomas, whereas Kaposi’s sarcoma-associated herpesvirus (KSHV) participates in the pathogenesis of endothelial sarcoma and lymphomas. EBV and KSHV are responsible for 120,000 and 44,000 annual new cases of cancer, respectively. Despite this clinical importance, no chemotherapies or vaccines have been developed for virus-specific treatment and prevention of these viruses. Humans are the only natural host for both EBV and KSHV, and only a limited species of laboratory animals are susceptible to their experimental infection; this strict host tropism has hampered the development of their animal models and thereby impeded the study of therapeutic and prophylactic strategies. To overcome this difficulty, three main approaches have been used to develop animal models for human gammaherpesvirus infections. The first is experimental infection of laboratory animals with EBV or KSHV. New-world non-human primates (NHPs) and rabbits have been mainly used in this approach. The second is experimental infection of laboratory animals with their own inherent gammaherpesviruses. NHPs and mice have been mainly used here. The third, a recent trend, employs experimental infection of EBV or KSHV or both to immunodeficient mice reconstituted with human immune system components (humanized mice). This review will discuss how these three approaches have been used to reproduce human clinical conditions associated with gammaherpesviruses and to analyze the mechanisms of their pathogenesis. Full article
(This article belongs to the Special Issue Comparative Animal Models of Human Viral Infections)
Show Figures

Figure 1

25 pages, 3895 KB  
Review
Clinical Manifestations, Pathogenesis and Treatment of Hepatitis E Virus Infections
by Sébastien Lhomme, Olivier Marion, Florence Abravanel, Jacques Izopet and Nassim Kamar
J. Clin. Med. 2020, 9(2), 331; https://doi.org/10.3390/jcm9020331 - 24 Jan 2020
Cited by 110 | Viewed by 11643
Abstract
Hepatitis E virus (HEV) is the most common cause of acute viral hepatitis throughout the world. Most infections are acute but they can become chronic in immunocompromised patients, such as solid organ transplant patients, patients with hematologic malignancy undergoing chemotherapy and those with [...] Read more.
Hepatitis E virus (HEV) is the most common cause of acute viral hepatitis throughout the world. Most infections are acute but they can become chronic in immunocompromised patients, such as solid organ transplant patients, patients with hematologic malignancy undergoing chemotherapy and those with a human immunodeficiency virus (HIV) infection. Extra-hepatic manifestations, especially neurological and renal diseases, have also been described. To date, four main genotypes of HEV (HEV1-4) were described. HEV1 and HEV2 only infect humans, while HEV3 and HEV4 can infect both humans and animals, like pigs, wild boar, deer and rabbits. The real epidemiology of HEV has been underestimated because most infections are asymptomatic. This review focuses on the recent advances in our understanding of the pathophysiology of acute HEV infections, including severe hepatitis in patients with pre-existing liver disease and pregnant women. It also examines the mechanisms leading to chronic infection in immunocompromised patients and extra-hepatic manifestations. Acute infections are usually self-limiting and do not require antiviral treatment. Conversely, a chronic HEV infection can be cleared by decreasing the dose of immunosuppressive drugs or by treating with ribavirin for 3 months. Nevertheless, new drugs are needed for those cases in which ribavirin treatment fails. Full article
Show Figures

Figure 1

10 pages, 7023 KB  
Article
Addition of Adipose-Derived Stem Cells to Mesenchymal Stem Cell Sheets Improves Bone Formation at an Ectopic Site
by Zhifa Wang, Zhijin Li, Taiqiang Dai, Chunlin Zong, Yanpu Liu and Bin Liu
Int. J. Mol. Sci. 2016, 17(2), 70; https://doi.org/10.3390/ijms17020070 - 2 Feb 2016
Cited by 12 | Viewed by 6612
Abstract
To determine the effect of adipose-derived stem cells (ADSCs) added to bone marrow-derived mesenchymal stem cell (MSC) sheets on bone formation at an ectopic site. We isolated MSCs and ADSCs from the same rabbits. We then prepared MSC sheets for implantation with or [...] Read more.
To determine the effect of adipose-derived stem cells (ADSCs) added to bone marrow-derived mesenchymal stem cell (MSC) sheets on bone formation at an ectopic site. We isolated MSCs and ADSCs from the same rabbits. We then prepared MSC sheets for implantation with or without ADSCs subcutaneously in the backs of severe combined immunodeficiency (SCID) mice. We assessed bone formation at eight weeks after implantation by micro-computed tomography and histological analysis. In osteogenic medium, MSCs grew to form multilayer sheets containing many calcium nodules. MSC sheets without ADSCs formed bone-like tissue; although neo-bone and cartilage-like tissues were sparse and unevenly distributed by eight weeks after implantation. In comparison, MSC sheets with ADSCs promoted better bone regeneration as evidenced by the greater density of bone, increased mineral deposition, obvious formation of blood vessels, large number of interconnected ossified trabeculae and woven bone structures, and greater bone volume/total volume within the composite constructs. Our results indicate that although sheets of only MSCs have the potential to form tissue engineered bone at an ectopic site, the addition of ADSCs can significantly increase the osteogenic potential of MSC sheets. Thus, the combination of MSC sheets with ADSCs may be regarded as a promising therapeutic strategy to stimulate bone regeneration. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Graphical abstract

Back to TopTop