Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = icetexane diterpenoids

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1878 KiB  
Article
The Anti-Arthritic Potential of the Ethanolic Extract of Salvia Lachnostachys Benth. Leaves and Icetexane Dinor-Diterpenoid Fruticuline B
by Natália de M. Balsalobre, Elisangela dos Santos-Procopio, Cristhian S. Oliveira, Silvia C. Neves, Maria H. Verdan, Saulo E. Silva-Filho, Rodrigo J. Oliveira, Maria É. A. Stefanello and Cândida A. L. Kassuya
Pharmaceuticals 2024, 17(9), 1226; https://doi.org/10.3390/ph17091226 - 18 Sep 2024
Cited by 2 | Viewed by 1401
Abstract
The decoction of Salvia lachnostachys Benth. leaves is used in Brazilian folk medicine for anti-spasmodic, antipyretic, and anxiolytic purposes. Some of the biological effects of an S. lachnostachys extract have been shown to be anti-inflammatory, anti-cancer, and antidepressant effects. In addition, this medicinal [...] Read more.
The decoction of Salvia lachnostachys Benth. leaves is used in Brazilian folk medicine for anti-spasmodic, antipyretic, and anxiolytic purposes. Some of the biological effects of an S. lachnostachys extract have been shown to be anti-inflammatory, anti-cancer, and antidepressant effects. In addition, this medicinal plant produces several compounds including icetexane diterpenoids, such as fruticuline A and fruticuline B. The aim of the present work was to evaluate the anti-hyperalgesic and anti-inflammatory properties of fruticuline B (FRUT B) and the ethanolic extract obtained from the leaves of S. lachnostachys (EESL) in experimental mouse models. EESL (30, 100, and 300 mg/kg) and FRUT B (1 mg/kg) were evaluated in articular inflammation-induced models in Swiss mice. In articular inflammation induced by Zymosan, EESL (300 mg/kg) and FRUT B (1 mg/kg) significantly reduced mechanical hyperalgesia (83.17% inhibition for EESL and 81.19% for FRUT B); edema (68.75% reduction for EESL and 33.66% for FRUT B); leukocyte migration (81.3% for EESSL and 92.2% for FRUT B), and nitric oxide production (88.3% for EESL and 74.4% for FRUT B). The exposure to fruticuline B significantly inhibited the edema (51.5%), mechanical (88.12%) and cold hyperalgesia (80.8%), and myeloperoxidase (MPO) (63.4%) activity 24 h after CFA injection. In the pleurisy model, FRUT B reduced 89.1% of leukocyte migration and 50.3% in nitric oxide production. Four hours after carrageenan injection, FRUT B (1 mg/kg) diminished 89.11% of mechanical hyperalgesia, 65.8% of paw edema, and 82.12% of the response to cold hyperalgesia. In the MTT test, EESL and fruticuline B caused no cytotoxicity. The present study revealed, for the first time, the anti-arthritic and anti-nociceptive effects of FRUT B, pointing out the therapeutic potential of the species to control inflammation and nociception. Future studies are needed to evaluate other biological properties of fruticuline B and to better understand its mechanism of action. Full article
(This article belongs to the Special Issue Bioactive Compounds Derived from Plants and Their Medicinal Potential)
Show Figures

Figure 1

16 pages, 1939 KiB  
Article
Structure, Absolute Configuration, Antiproliferative and Phytotoxic Activities of Icetexane and Abietane Diterpenoids from Salvia carranzae and Chemotaxonomic Implications
by Celia Bustos-Brito, Juan Pablo Torres-Medicis, Brenda Y. Bedolla-García, Sergio Zamudio, Teresa Ramírez-Apan, Martha Lydia Macías-Rubalcava, Leovigildo Quijano and Baldomero Esquivel
Molecules 2024, 29(6), 1226; https://doi.org/10.3390/molecules29061226 - 9 Mar 2024
Cited by 3 | Viewed by 1985
Abstract
From the aerial parts of Salvia carranzae Zamudio and Bedolla, three new icetexane-type diterpenoids were isolated. Their structures were established through spectroscopic methods and named the following: salvicarranzanolide (1), 19-deoxo-salvicarranzanolide (2) and 19-deoxo-20-deoxy-salvicarranzanolide (3). In addition, the [...] Read more.
From the aerial parts of Salvia carranzae Zamudio and Bedolla, three new icetexane-type diterpenoids were isolated. Their structures were established through spectroscopic methods and named the following: salvicarranzanolide (1), 19-deoxo-salvicarranzanolide (2) and 19-deoxo-20-deoxy-salvicarranzanolide (3). In addition, the known icetexane-type diterpenoids, 6,7,11,14-tetrahydro-7-oxo-icetexone (4), iso-icetexone (5), 19-deoxo-iso-icetexone (6), icetexone (7), 19-deoxo-icetexone (8) and 7α-acetoxy-6,7-dihydroicetexone (9), were also isolated, along with the abietanes sessein (10) and ferruginol (11). α-Tocopherol was also identified. Compounds 5, 6 and 8 were tested for their antiproliferative activity using the sulforhodamine B assay on six cancer and one normal human cell lines. Diterpenoids 5 and 6 showed noteworthy antiproliferative activity, exhibiting an IC50 (μM) = 0.43 ± 0.01 and 1.34 ± 0.04, respectively, for U251 (glioblastoma), an IC50 (μM) = 0.45 ± 0.01 and 1.29 ± 0.06 for K5621 (myelogenous leukemia), 0.84 ± 0.07 and 1.03 ± 0.10 for HCT-15 (colon cancer), and 0.73 ± 0.06 and 0.95 ± 0.09 for SKLU-1 (lung adenocarcinoma) cell lines. On the other hand, the phytotoxicity of compounds 57 and 910 was evaluated on seed germination and root growth in some weeds such as Medicago sativa, Panicum miliaceum, Amaranthus hypochondriacus and Trifolium pratense as models. While compounds 5 and 10 exhibited a moderate inhibitory effect on the root growth of A. hypochondriacus and T. pratense at 100 ppm, the diterpenoids 6, 7 and 9 were ineffective in all the plant models. Taxonomic positions based on the chemical profiles found are also discussed. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

21 pages, 3735 KiB  
Article
Synthesis, Structure–Activity Relationships, and Parasitological Profiling of Brussonol Derivatives as New Plasmodium falciparum Inhibitors
by Camila S. Barbosa, Anees Ahmad, Sarah El Chamy Maluf, Igor M. R. Moura, Guilherme E. Souza, Giovanna A. H. Guerra, Roberto R. Moraes Barros, Marcos L. Gazarini, Anna C. C. Aguiar, Antonio C. B. Burtoloso and Rafael V. C. Guido
Pharmaceuticals 2022, 15(7), 814; https://doi.org/10.3390/ph15070814 - 30 Jun 2022
Cited by 2 | Viewed by 2817
Abstract
Malaria is a parasitic disease caused by protozoan parasites from the genus Plasmodium. Plasmodium falciparum is the most prevalent species worldwide and the causative agent of severe malaria. The spread of resistance to the currently available antimalarial therapy is a major concern. [...] Read more.
Malaria is a parasitic disease caused by protozoan parasites from the genus Plasmodium. Plasmodium falciparum is the most prevalent species worldwide and the causative agent of severe malaria. The spread of resistance to the currently available antimalarial therapy is a major concern. Therefore, it is imperative to discover and develop new antimalarial drugs, which not only treat the disease but also control the emerging resistance. Brussonol is an icetexane derivative and a member of a family of diterpenoids that have been isolated from several terrestrial plants. Here, the synthesis and antiplasmodial profiling of a series of brussonol derivatives are reported. The compounds showed inhibitory activities in the low micromolar range against a panel of sensitive and resistant P. falciparum strains (IC50s = 5–16 μM). Moreover, brussonol showed fast-acting in vitro inhibition and an additive inhibitory behavior when combined with the antimalarial artesunate (FICindex~1). The mode of action investigation indicated that brussonol increased the cytosolic calcium levels within the parasite. Hence, the discovery of brussonol as a new scaffold endowed with antiplasmodial activity will enable us to design derivatives with improved properties to deliver new lead candidates for malaria. Full article
(This article belongs to the Special Issue Drug Candidates for the Treatment of Infectious Diseases)
Show Figures

Graphical abstract

22 pages, 2278 KiB  
Article
Structure, Absolute Configuration, and Antiproliferative Activity of Abietane and Icetexane Diterpenoids from Salvia ballotiflora
by Baldomero Esquivel, Celia Bustos-Brito, Mariano Sánchez-Castellanos, Antonio Nieto-Camacho, Teresa Ramírez-Apan, Pedro Joseph-Nathan and Leovigildo Quijano
Molecules 2017, 22(10), 1690; https://doi.org/10.3390/molecules22101690 - 18 Oct 2017
Cited by 29 | Viewed by 7207
Abstract
From the aerial parts of Salvia ballotiflora, eleven diterpenoids were isolated; among them, four icetexanes and one abietane (15) are reported for the first time. Their structures were established by spectroscopic means, mainly 1H- and 13C-NMR, [...] Read more.
From the aerial parts of Salvia ballotiflora, eleven diterpenoids were isolated; among them, four icetexanes and one abietane (15) are reported for the first time. Their structures were established by spectroscopic means, mainly 1H- and 13C-NMR, including 1D and 2D homo- and hetero-nuclear experiments. Most of the isolated diterpenoids were tested for their antiproliferative, anti-inflammatory, and radical scavenging activities using the sulforhodamine B assay on six cancer cell lines, the TPA-induced ear edema test in mice, and the reduction of the DPPH assay, respectively. Some diterpenoids showed anti-proliferative activity, these being icetexanes 6 and 3, which were the most active with IC50 (μM) = 0.27 ± 0.08 and 1.40 ± 0.03, respectively, for U251 (human glioblastoma) and IC50 (μM) = 0.0.46 ± 0.05 and 0.82 ± 0.06 for SKLU-1 (human lung adenocarcinoma), when compared with adriamycin (IC50 (μM) = 0.08 ± 0.003 and 0.05 ± 0.003, as the positive control), respectively. Compounds 3 and 10 showed significant reduction of the induced ear edema of 37.4 ± 2.8 and 25.4 ± 3.0% (at 1.0 μmol/ear), respectively. Compound 4 was the sole active diterpenoid in the antioxidant assay (IC50 = 98. 4 ± 3.3), using α-tocopherol as the positive control (IC50 (μM) = 31.7 ± 1.04). The diterpenoid profile found is of chemotaxonomic relevance and reinforces the evolutionary link of S. ballotiflora with other members of the section Tomentellae. Full article
(This article belongs to the Collection Bioactive Compounds)
Show Figures

Figure 1

Back to TopTop