Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = hyperactive Kupffer cells

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 4928 KB  
Article
Ultrastructural Profile Combined with Immunohistochemistry of a Hepatic Progenitor Cell Line in Pediatric Autoimmune Hepatitis: New Insights into the Morphological Pattern of the Disease
by Joanna Maria Lotowska, Maria Elzbieta Sobaniec-Lotowska and Piotr Sobaniec
Cells 2021, 10(8), 1899; https://doi.org/10.3390/cells10081899 - 27 Jul 2021
Cited by 5 | Viewed by 3086
Abstract
Considering that the heterogenic population of a hepatic progenitor cell line (HPCL) can play a vital role in autoimmune hepatitis (AIH), we decided to conduct pioneering retrospective evaluation of these cells in pediatric AIH by means of transmission electron microscopy (TEM). The aim [...] Read more.
Considering that the heterogenic population of a hepatic progenitor cell line (HPCL) can play a vital role in autoimmune hepatitis (AIH), we decided to conduct pioneering retrospective evaluation of these cells in pediatric AIH by means of transmission electron microscopy (TEM). The aim of the study was to assess the ultrastructure of the HPCL in children with untreated AIH. Ultrastructural analysis of the HPCL population, preceded by immunohistochemical staining for cytokeratin 7 (CK7), was performed using pretreatment liver biopsies from 23 children with clinicopathologically diagnosed AIH. Immunohistochemical assessment for CK7 allowed detection of proliferating immature epithelial cells differentiating towards periportal and intralobular intermediate hepatocytes without marked formation of ductular reactions in AIH children. Using TEM, we distinguished three morphological types of HPCs: I—the most undifferentiated progenitor cells; III—intermediate hepatocyte-like cells; II—intermediate bile duct cells. Most frequent were the cells differentiating towards hepatocytes, most rare—those differentiating towards cholangiocytes. The results indicate that an HPCL may be an important source of hepatocyte regeneration. Ultrastructural analyses of the HPCL population, combined with immunohistochemistry for CK7, might be a useful tool to evaluate liver cell regeneration, including fibrogenesis, and may help better understand the morphological pattern of the disease, in pediatric AIH. Frequent appearance of an HPCL in the vicinity of fibrotic foci, often accompanied by hyperactive Kupffer cells and transitional hepatic stellate cells, may indicate their significant involvement in liver fibrogenesis. Full article
(This article belongs to the Collection Recent Advances in Liver Repair Strategies)
Show Figures

Figure 1

15 pages, 8571 KB  
Article
Descriptive Histopathological and Ultrastructural Study of Hepatocellular Alterations Induced by Aflatoxin B1 in Rats
by Fatma Abo Zakaib Ali, Fatma M. Abdel-Maksoud, Hekmat Osman Abd Elaziz, Ashraf Al-Brakati and Ehab Kotb Elmahallawy
Animals 2021, 11(2), 509; https://doi.org/10.3390/ani11020509 - 16 Feb 2021
Cited by 40 | Viewed by 4931
Abstract
Liver sinusoids are lined by fenestrated endothelial cells surrounded by perisinusoidal cells, Kupffer cells, and pit cells, as well as large granular lymphocytes. The functional ability of the liver cells can be substantially modified by exposure to toxins. In the current work, we [...] Read more.
Liver sinusoids are lined by fenestrated endothelial cells surrounded by perisinusoidal cells, Kupffer cells, and pit cells, as well as large granular lymphocytes. The functional ability of the liver cells can be substantially modified by exposure to toxins. In the current work, we assessed the histopathological and ultrastructural effects of a time-course exposure to aflatoxin B1 (AFB1) on the hepatic structures of rats. A total of 30 adult female Wistar rats were randomly divided into three groups: a control group, a group orally administered 250 µg/kg body weight/day of AFB1 for 5 days/week over 4 weeks, and a group that received the same AFB1 treatment but over 8 weeks. Histopathological and ultrastructural examinations of hepatocytes revealed massive vacuolar degeneration and signs of necrosis. Furthermore, the rat liver of the treated group exhibited damage to the sinusoidal endothelium, invasion of the space of Disse with hyperactive Kupffer cells, and some immune cells, as well as Ito cells overloaded with lipids. In addition, damaged telocytes were observed. Taken together, our results indicate that AFB1 induces irreversible adverse effects on the livers of rats. Full article
(This article belongs to the Special Issue Feed Safety and Quality Control)
Show Figures

Figure 1

Back to TopTop