Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = hydrophobic statins

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 6793 KiB  
Article
Preparation and Therapeutic Evaluation of Engineered Semaglutide and Statin–Lipid Conjugate-Based Nanoparticle
by Kyeong-Ju Lee, Seong-Bin Yang, Jae-Hyeon Lee, Bison Seo, Hyung-Sik Won and Jooho Park
Pharmaceutics 2025, 17(4), 480; https://doi.org/10.3390/pharmaceutics17040480 - 7 Apr 2025
Viewed by 1036
Abstract
Background: Fatty liver disease and obesity are among the most prevalent health conditions in modern society and have recently garnered significant attention. Semaglutide, a well-known anti-obesity drug, has been widely used for diabetes and obesity treatment; however, nanotherapeutics utilizing semaglutide have not [...] Read more.
Background: Fatty liver disease and obesity are among the most prevalent health conditions in modern society and have recently garnered significant attention. Semaglutide, a well-known anti-obesity drug, has been widely used for diabetes and obesity treatment; however, nanotherapeutics utilizing semaglutide have not yet been developed. Methods: A novel statin–lipid conjugate was synthesized using rosuvastatin and ursodeoxycholic acid, a liver-protective agent. This conjugate was then formulated with semaglutide through hydrophobic interactions to create a new nanoparticle system. The physicochemical properties of the nanoparticles were analyzed, and their therapeutic efficacy was evaluated in a high-fat diet (HFD)-induced animal model. Results: The statin–lipid conjugate was successfully synthesized, forming novel nanoparticles with semaglutide in an aqueous solution. These nanoparticles exhibited distinct properties compared to conventional semaglutide formulations. In animal experiments, the treatment group demonstrated a 30.24% reduction in body weight and a 46.80% improvement in liver function markers compared to the control group. Conclusions: This study introduces a novel semaglutide-based nanoparticle (SRLC NP) system that overcomes key limitations of conventional semaglutide therapy by providing enhanced bioavailability, extended circulation time, and improved cellular uptake. These findings highlight the potential of SRLC NPs as a clinically translatable nanotherapeutic approach for more effective, sustained, and patient-friendly obesity and fatty liver disease treatment. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Graphical abstract

19 pages, 5699 KiB  
Article
Molecular Docking Studies and In Vitro Activity of Pancreatic Lipase Inhibitors from Yak Milk Cheese
by Peng Wang, Xuemei Song and Qi Liang
Int. J. Mol. Sci. 2025, 26(2), 756; https://doi.org/10.3390/ijms26020756 - 17 Jan 2025
Cited by 2 | Viewed by 1189
Abstract
Pancreatic lipase serves as a primary trigger for hyperlipidemia and is also a crucial target in the inhibition of hypercholesterolemia. By synthesizing anti-hypercholesterolemic drugs such as atorvastatin, which are used to treat hypercholesterolemia, there were some side effects associated with the long-term use [...] Read more.
Pancreatic lipase serves as a primary trigger for hyperlipidemia and is also a crucial target in the inhibition of hypercholesterolemia. By synthesizing anti-hypercholesterolemic drugs such as atorvastatin, which are used to treat hypercholesterolemia, there were some side effects associated with the long-term use of statins. Based on this idea, in the present study, we identified peptides that inhibited PL by virtual screening and in vitro activity assays. In addition, to delve into the underlying mechanisms, we undertook a dual investigative approach involving both molecular docking analyses and molecular dynamics simulations. The results showed that peptides RK7, KQ7, and TL9, all with molecular weights of <1000 Da and a high proportion of hydrophobic amino acids, inhibited PL well. Molecular docking and molecular dynamics showed that peptides RK7, KQ7, and TL9 bound to important amino acid residues of PL, such as Pro and Leu, through hydrogen bonding, hydrophobic interactions, salt bridges, and π-π stacking to occupy the substrate-binding site, which inhibited PL and identified them as potential PL inhibitors. In vitro tests showed that the IC50 of RK7 and KQ7 on PL were 0.690 mg/mL and 0.593 mg/mL, respectively, and the inhibitory effects of RK7 and KQ7 on PL were significantly enhanced after simulated gastrointestinal digestion. Our results suggested that peptides RK7 and KQ7 from yak milk cheese can be identified as a novel class of potential PL inhibitors. Full article
Show Figures

Figure 1

21 pages, 3457 KiB  
Article
The Blocking of Drug Resistance Channels by Selected Hydrophobic Statins in Chemoresistance Human Melanoma
by Wojciech Placha, Piotr Suder, Agnieszka Panek, Patrycja Bronowicka-Adamska, Marta Zarzycka, Małgorzata Szczygieł, Jacek Zagajewski and Monika Weronika Piwowar
Biomolecules 2023, 13(12), 1682; https://doi.org/10.3390/biom13121682 - 21 Nov 2023
Cited by 1 | Viewed by 2178
Abstract
Despite the development of modern drugs, drug resistance in oncology remains the main factor limiting the curability of patients. This paper shows the use of a group of hydrophobic statins to inhibit drug resistance (Pgp protein). In a chemoresistance melanoma cell model, viability, [...] Read more.
Despite the development of modern drugs, drug resistance in oncology remains the main factor limiting the curability of patients. This paper shows the use of a group of hydrophobic statins to inhibit drug resistance (Pgp protein). In a chemoresistance melanoma cell model, viability, necroptosis with DNA damage, the absorption of the applied pharmaceuticals, and the functional activity of the ABCB1 drug transporter after administration of docetaxel or docetaxel with a selected hydrophobic statin were studied. Taxol-resistant human melanoma cells from three stages of development were used as a model: both A375P and WM239A metastatic lines and radial growth phase WM35 cells. An animal model (Mus musculus SCID) was developed for the A375P cell line. The results show that hydrophobic statins administered with docetaxel increase the accumulation of the drug in the tumor cell a.o. by blocking the ABCB1 channel. They reduce taxol-induced drug resistance. The tumor size reduction was observed after the drug combination was administrated. It was shown that the structural similarity of statins is of secondary importance, e.g., pravastatin and simvastatin. Using cytostatics in the presence of hydrophobic statins increases their effectiveness while reducing their overall toxicity. Full article
Show Figures

Figure 1

16 pages, 2106 KiB  
Review
Current Nanomedicine for Targeted Vascular Disease Treatment: Trends and Perspectives
by Kyung-A Choi, June Hyun Kim, Kitae Ryu and Neha Kaushik
Int. J. Mol. Sci. 2022, 23(20), 12397; https://doi.org/10.3390/ijms232012397 - 17 Oct 2022
Cited by 22 | Viewed by 4813
Abstract
Nanotechnology has been developed to deliver cargos effectively to the vascular system. Nanomedicine is a novel and effective approach for targeted vascular disease treatment including atherosclerosis, coronary artery disease, strokes, peripheral arterial disease, and cancer. It has been well known for some time [...] Read more.
Nanotechnology has been developed to deliver cargos effectively to the vascular system. Nanomedicine is a novel and effective approach for targeted vascular disease treatment including atherosclerosis, coronary artery disease, strokes, peripheral arterial disease, and cancer. It has been well known for some time that vascular disease patients have a higher cancer risk than the general population. During atherogenesis, the endothelial cells are activated to increase the expression of adhesion molecules such as Intercellular Adhesion Molecule 1 (ICAM-1), Vascular cell adhesion protein 1 (VCAM-1), E-selectin, and P-selectin. This biological activation of endothelial cells gives a targetability clue for nanoparticle strategies. Nanoparticle formation has a passive targeting pathway due to the increased adhesion molecule expression on the cell surface as well as increased cell activation. In addition, the VCAM-1-targeting peptide has been widely used to target the inflamed endothelial cells. Biomimetic nanoparticles using platelet and leukocyte membrane fragment strategies have been promising techniques for targeted vascular disease treatment. Cyclodextrin, a natural oligosaccharide with a hydrophobic cavity, increase the solubility of cholesterol crystals at the atherosclerotic plaque site and has been used to deliver the hydrophobic drug statin as a therapeutic in a targeted manner. In summary, nanoparticles decorated with various targeting molecules will be an effective and promising strategy for targeted vascular disease treatment. Full article
(This article belongs to the Special Issue Nanotechnology in Cancer Treatment 3.0)
Show Figures

Figure 1

18 pages, 19877 KiB  
Article
Hypolipidemic Activity of Olive Oil-Based Nanostructured Lipid Carrier Containing Atorvastatin
by Heba S. Elsewedy, Tamer M. Shehata, Mervt M. Almostafa and Wafaa E. Soliman
Nanomaterials 2022, 12(13), 2160; https://doi.org/10.3390/nano12132160 - 23 Jun 2022
Cited by 14 | Viewed by 2668
Abstract
Currently, hyperlipidemia is a growing health issue that is considered a risk factor for obesity. Controlling body weight and modifying life style in most of cases are not adequate and the condition requires medical treatment. Statin drugs (mainly Atorvastatin (ATO)), have been used [...] Read more.
Currently, hyperlipidemia is a growing health issue that is considered a risk factor for obesity. Controlling body weight and modifying life style in most of cases are not adequate and the condition requires medical treatment. Statin drugs (mainly Atorvastatin (ATO)), have been used broadly and for long time as medications for handling higher levels of lipid, especially bad cholesterol, which accordingly controls the prevalence of obesity. Still, the obstacle that stands in front of any formulation is the poor solubility of the drug. Low solubility of ATO came up with poor absorption as well as poor bioavailability. This paved the way for the present study, which aimed to exploit nanotechnology and develop certain nanolipid carriers that could accommodate hydrophobic drugs, such as ATO. Nanostructured lipid carrier (NLC) containing ATO was fabricated using olive oil. Olive oil is natural plant oil possessing confirmed hypolipidemic activity that would help in improving the efficacy of the formulation. Via applying the Quality by Design (QbD) approach, one NLC formula was selected to be optimized based on appropriate size and higher entrapment. Optimized ATO-NLC was scrutinized for zeta potential, in vitro study and kinetic profile. Moreover, stability testing and in vivo hypolipidemic behavior was conducted. The optimized NLC formulation seemed to show particle size (254.23 nm) with neutral zeta potential (−1.77 mV) and entrapment efficiency (69.56%). The formulation could be prolonged for 12 h and provided higher % of release (97.17%). Stability testing confirmed the role of modifying the surface of the formulation with PEG-DSPE in providing a highly stable formulation that could withstand three months storage in two altered conditions. Ultimately, optimized ATO-NLC could successfully lower total cholesterol level in rats induced with obesity and fed a high-fat diet. Remarkably, ATO-NLC prepared with olive oil, in addition to shielding its surface, would provide a stable formulation that holds up the synergistic action between olive oil and ATO. Full article
(This article belongs to the Special Issue Micro/Nano Emulsions: Fabrication and Applications)
Show Figures

Figure 1

26 pages, 8048 KiB  
Article
Acetylsalicylic Acid Suppresses Alcoholism-Induced Cognitive Impairment Associated with Atorvastatin Intake by Targeting Cerebral miRNA155 and NLRP3: In Vivo, and In Silico Study
by Doaa I. Mohamed, Dalia Alaa El-Din Aly El-Waseef, Enas S. Nabih, Omnyah A. El-Kharashi, Hanaa F. Abd El-Kareem, Hebatallah H. Abo Nahas, Basel A. Abdel-Wahab, Yosra A. Helmy, Samar Zuhair Alshawwa and Essa M. Saied
Pharmaceutics 2022, 14(3), 529; https://doi.org/10.3390/pharmaceutics14030529 - 27 Feb 2022
Cited by 37 | Viewed by 3800
Abstract
Alcoholism is one of the most common diseases that can lead to the development of several chronic diseases including steatosis, and cognitive dysfunction. Statins are lipid-lowering drugs that are commonly prescribed for patients with fatty liver diseases; however, the exact effect of statins [...] Read more.
Alcoholism is one of the most common diseases that can lead to the development of several chronic diseases including steatosis, and cognitive dysfunction. Statins are lipid-lowering drugs that are commonly prescribed for patients with fatty liver diseases; however, the exact effect of statins on cognitive function is still not fully understood. In the present study, we have investigated the molecular and microscopic basis of cognitive impairment induced by alcohol and/or Atorvastatin (ATOR) administration to male Wistar albino rats and explored the possible protective effect of acetylsalicylic acid (ASA). The biochemical analysis indicated that either alcohol or ATOR or together in combination produced a significant increase in the nucleotide-binding domain–like receptor 3 (NLRP3), interleukin-1β (IL-1β) miRNA155 expression levels in the frontal cortex of the brain tissue. The histological and morphometric analysis showed signs of degeneration in the neurons and the glial cells with aggregations of inflammatory cells and a decrease in the mean thickness of the frontal cortex. Immunohistochemical analysis showed a significant increase in the caspase-8 immunoreaction in the neurons and glial cells of the frontal cortex. Interestingly, administration of ASA reversed the deleterious effect of the alcohol and ATOR intake and improved the cognitive function as indicated by biochemical and histological analysis. ASA significantly decreased the expression levels of miRNA155, NLRP3, and IL1B, and produced a significant decrease in caspase-8 immunoreaction in the neurons and glial cells of the frontal cortex with a reduction in the process of neuroinflammation and neuronal damage. To further investigate these findings, we have performed an extensive molecular docking study to investigate the binding affinity of ASA to the binding pockets of the NLRP3 protein. Our results indicated that ASA has high binding scores toward the active sites of the NLRP3 NACHT domain with the ability to bind to the NLRP3 pockets by a set of hydrophilic and hydrophobic interactions. Taken together, the present study highlights the protective pharmacological effect of ASA to attenuate the deleterious effect of alcohol intake and long term ATOR therapy on the cognitive function via targeting miRNA155 and NLRP3 proteins. Full article
Show Figures

Figure 1

18 pages, 4702 KiB  
Article
Discovery of Potential Inhibitors of Squalene Synthase from Traditional Chinese Medicine Based on Virtual Screening and In Vitro Evaluation of Lipid-Lowering Effect
by Yankun Chen, Xi Chen, Ganggang Luo, Xu Zhang, Fang Lu, Liansheng Qiao, Wenjing He, Gongyu Li and Yanling Zhang
Molecules 2018, 23(5), 1040; https://doi.org/10.3390/molecules23051040 - 28 Apr 2018
Cited by 23 | Viewed by 5507
Abstract
Squalene synthase (SQS), a key downstream enzyme involved in the cholesterol biosynthetic pathway, plays an important role in treating hyperlipidemia. Compared to statins, SQS inhibitors have shown a very significant lipid-lowering effect and do not cause myotoxicity. Thus, the paper aims to discover [...] Read more.
Squalene synthase (SQS), a key downstream enzyme involved in the cholesterol biosynthetic pathway, plays an important role in treating hyperlipidemia. Compared to statins, SQS inhibitors have shown a very significant lipid-lowering effect and do not cause myotoxicity. Thus, the paper aims to discover potential SQS inhibitors from Traditional Chinese Medicine (TCM) by the combination of molecular modeling methods and biological assays. In this study, cynarin was selected as a potential SQS inhibitor candidate compound based on its pharmacophoric properties, molecular docking studies and molecular dynamics (MD) simulations. Cynarin could form hydrophobic interactions with PHE54, LEU211, LEU183 and PRO292, which are regarded as important interactions for the SQS inhibitors. In addition, the lipid-lowering effect of cynarin was tested in sodium oleate-induced HepG2 cells by decreasing the lipidemic parameter triglyceride (TG) level by 22.50%. Finally. cynarin was reversely screened against other anti-hyperlipidemia targets which existed in HepG2 cells and cynarin was unable to map with the pharmacophore of these targets, which indicated that the lipid-lowering effects of cynarin might be due to the inhibition of SQS. This study discovered cynarin is a potential SQS inhibitor from TCM, which could be further clinically explored for the treatment of hyperlipidemia. Full article
(This article belongs to the Special Issue Molecular Modeling in Drug Design)
Show Figures

Figure 1

10 pages, 108 KiB  
Article
Simvastatin Release from Poly(lactide-co-glycolide) Membrane Scaffolds
by Hassan Rashidi, Marianne J. Ellis, Sarah H. Cartmell and Julian B. Chaudhuri
Polymers 2010, 2(4), 709-718; https://doi.org/10.3390/polym2040709 - 9 Dec 2010
Cited by 9 | Viewed by 10401
Abstract
Statins, a group of potent inhibitors of 3-hydroxy-3-methylglutaryl Coenzyme A reductase in cholesterol biosynthesis pathway, have been widely used as a cholesterol lowering drug. The plieotrophic effect of statins on bone metabolism in long-term usage has been begun to be studied during recent [...] Read more.
Statins, a group of potent inhibitors of 3-hydroxy-3-methylglutaryl Coenzyme A reductase in cholesterol biosynthesis pathway, have been widely used as a cholesterol lowering drug. The plieotrophic effect of statins on bone metabolism in long-term usage has been begun to be studied during recent years and several in vitro and in vivo studies have demonstrated the ability of statins to promote expression of bone morphogenetic protein-2 (BMP-2), inhibition of osteoclast differentiation and reduction of osteoporotic fractures risk. The high liver specificity and low oral bioavailability of statins, leading to poor peripheral distribution, are the main obstacles to benefit anabolic effects of hydrophobic statins on bone formation. Therefore, developing new administration roots for direct delivery to achieve optimum concentration in the bone microenvironment is of interest. Here we present and compare two approaches of combining statins with bone tissue engineering scaffolds. Simvastatin was combined with a poly(lactide-co-glycolide) (PLGA) membrane scaffold for diffusion-controlled release by dissolving simvastatin (dis-sim) in the membrane casting dope, and for degradation-controlled release by covalently bonding saponifiedsimvastatin (sap-sim) to the PLGA in the spinning dope. Rheological and concentration-dependent membrane morphology changes were observed with saponifiedsimvastatin, suggesting ester bond cleavage and covalent bonding of the statin to the PLGA, but not with dissolved simvastatin. Dissolved simvastatin membranes showed a logarithmic decay release profile while the saponifiedsimvastatin membranes showed constant release. It can be concluded that the covalent bonding of simvastatinto PLGA scaffolds is showing potential for use as a controlled releasescaffold for bone tissue engineering. Full article
(This article belongs to the Special Issue Biofunctional Polymers for Medical Applications)
Show Figures

Figure 1

Back to TopTop